Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Michael functions

The authors are indebted to Professor Michael Baer for many years of exciting collaboration, to Dr. B. Halperin for advice, to F rofessor Mark Pere lmanfor discussion and permission to quote from his preprint Temporal Magnitudes and Functions of Scattering Theory, to Professor Shmuel Elitzur for suggesting the approach leading to Alternative Derivation in Section V and to Professor Tgal Talmi for an inspiration [327],... [Pg.169]

The target compound is searched for a rctron. A retron is the structural subunit required to be present in the target in order to apply a transform. In Figure 10,3-30 the rctron of a Michael addition is a sequence of five carbon atoms with two carbonyl functions in the 1,5-position. For a Michael addition transform to be applied, it has to be present,... [Pg.570]

The TT-allylpalladium complexes 241 formed from the ally carbonates 240 bearing an anion-stabilizing EWG are converted into the Pd complexes of TMM (trimethylenemethane) as reactive, dipolar intermediates 242 by intramolecular deprotonation with the alkoxide anion, and undergo [3 + 2] cycloaddition to give five-membered ring compounds 244 by Michael addition to an electron-deficient double bond and subsequent intramolecular allylation of the generated carbanion 243. This cycloaddition proceeds under neutral conditions, yielding the functionalized methylenecyclopentanes 244[148], The syn-... [Pg.322]

The product of this Michael addition has the necessary functionality to undergo an intramolecular aldol condensation... [Pg.779]

These reversible reactions are cataly2ed by bases or acids, such as 2iac chloride and aluminum isopropoxide, or by anion-exchange resias. Ultrasonic vibrations improve the reaction rate and yield. Reaction of aromatic aldehydes or ketones with nitroparaffins yields either the nitro alcohol or the nitro olefin, depending on the catalyst. Conjugated unsaturated aldehydes or ketones and nitroparaffins (Michael addition) yield nitro-substituted carbonyl compounds rather than nitro alcohols. Condensation with keto esters gives the substituted nitro alcohols (37) keto aldehydes react preferentially at the aldehyde function. [Pg.100]

Micha.elAdditions. The reaction of a bismaleimide with a functional nucleophile (diamine, bisthiol, etc) via the Michael addition reaction converts a BMI building block into a polymer. The non stoichiometric reaction of an aromatic diamine with a bismaleimide was used by Rhc )ne Poulenc to synthesize polyaminobismaleimides as shown in Figure 6 (31). [Pg.26]

The Michael addition reaction of amines and thiols with bismaleimides or functionalized monomaleimides is a versatile tool ia the synthesis of chain-extended maleimide-terroinated prepolymers. These prepolymers generally are soluble ia organic solvents from which they can be processed to prepreg and molded to high quaUty, void-free laminates. [Pg.27]

Figure 4.37 Component reliability as a function of overall system reliability and number of components in series (adapted from Michaels and Woods, 1989)... Figure 4.37 Component reliability as a function of overall system reliability and number of components in series (adapted from Michaels and Woods, 1989)...
When the enamine is in conjugation with a carbonyl function, as in a-aminomethylene aldehydes (528,529), ketones (530), or esters (531), a Michael addition is found in vinylogous analogy to the reactions of amides. An application to syntheses in the vitamin A series employed a vinyl lithium compound (532). [Pg.424]

Density-Functional Methods in Chemistry and Materials Science Edited by Michael Springborg Published 1997, ISBN 0 471 96759 9... [Pg.338]

From a mechanistic standpoint, ammonia serves two functions 1) it behaves as a base to catalyze an aldol reaction between 2 equivalents of 31 to generate the corresponding enal 33, and 2) it is the source of nitrogen for the resultant pyridyl ring. This occurs through formation of enamine 34 with a third equivalent of 31. The Michael addition of 34 to 33 followed by cyclization gives rise to 32. [Pg.308]

Reaction of tryptamine with simple ketones has not been widely explored. Acetone in the presence of benzoyl chloride has been reported to yield 2-benzoyl-1,1 -dimethyl-1,2,3,4-tetrahydro-j8-carbo-line. That the keto group is much less reactive than the aldehyde group is indicated by the fact that j8-keto aldehydes, in the form of their acetals or sodium salts, react with tryptamine at the aldehyde function to yield the conjugated enamine 24, which undergoes ring closure via an intramolecular Michael addition. The potentialities of this interesting modification of the Pictet-Spengler reaction have not yet been fuUy explored. [Pg.88]

Another important feature of the Nef reaction is the possible use of a CH-NO2 function as an umpoled carbonyl function. A proton at a carbon a to a nitro group is acidic, and can be abstracted by base. The resulting anionic species has a nucleophilic carbon, and can react at that position with electrophiles. In contrast the carbon center of a carbonyl group is electrophilic, and thus reactive towards nucleophiles. 1,4-Diketones 4 can for example be prepared from a-acidic nitro compounds by a Michael additionfNef reaction sequence " ... [Pg.211]

The Michael adclidon of a nitrogen-centered nucleophile to nitroalkenes affords compounds that may serve as precursors of vicinal chamines, since the nitro group can be reduced to an amino function by reduction The very convenient method for the preparation of 1,2-chamines is developed by the adchdon of O-ethyihydroxylamines to nitroalkenes followed by redncdon with H-, in the presence of PckC fEq 4 24 ... [Pg.77]

The Michael addition of nih oalkanes to alkenes substituted with two elecbon-withdrawing groups at the a- and 3-positions provides a new method for the preparation of functionalized alkenes. Although reactions are not new, Ballini and coworkers have used this sbategy in the synthesis of polyfunctionalized unsaturated carbonyl derivatives by Michael addition of nih oalkanes to enediones as shown in Eqs. 7.124-7.126. Success of this type of reaction depends on the base and solvent. They have found that DBU in acetonihile is the method of choice for this puipose. This base-solvent system has been used widely in Michael additions of nitroalkanes to elechon-deficient alkenes (see Section 4.3, which discusses the Michael addition). ... [Pg.220]

A sequence of straightforward functional group interconversions leads from 17 back to compound 20 via 18 and 19. In the synthetic direction, a base-induced intramolecular Michael addition reaction could create a new six-membered ring and two stereogenic centers. The transformation of intermediate 20 to 19 would likely be stereoselective substrate structural features inherent in 20 should control the stereochemical course of the intramolecular Michael addition reaction. Retrosynthetic disassembly of 20 by cleavage of the indicated bond provides precursors 21 and 22. In the forward sense, acylation of the nitrogen atom in 22 with the acid chloride 21 could afford amide 20. [Pg.103]

Through a short sequence of functional group manipulations, compound 6 could be elaborated from allylic alcohol 7, the projected product of a Wharton fragmentation4 of epoxy ketone 8 (vide infra). In turn, compound 8 could be derived from enone 9. In the synthetic direction, a Michael addition5 of hydroperoxide anion to enone 9 would be expected to take place from the less hindered side of the molecule. Epoxy ketone 8 would fhen form upon collapse of the intermediate enolate with concomitant expulsion of hydroxide ion (see arrows, Scheme 2). [Pg.474]

After reduction of the nitro function of the porphyrin, the porphyrinamine intermediate can be reacted with z./l-unsaturated carbonyl compounds to yield porphyrins with a fused pyridine ring, which is formed by Michael addition, imine formation and dehydrogenation. [Pg.609]

The aldehyde or ketone functionalities in the Michael adducts are restored by ozonolysis of the hydrazone moiety resulting in am/-3,4-disubstituted-5-oxoalkanoates 1. [Pg.960]

An excellent synthetic method for asymmetric C—C-bond formation which gives consistently high enantioselectivity has been developed using azaenolates based on chiral hydrazones. (S)-or (/ )-2-(methoxymethyl)-1 -pyrrolidinamine (SAMP or RAMP) are chiral hydrazines, easily prepared from proline, which on reaction with various aldehydes and ketones yield optically active hydrazones. After the asymmetric 1,4-addition to a Michael acceptor, the chiral auxiliary is removed by ozonolysis to restore the ketone or aldehyde functionality. The enolates are normally prepared by deprotonation with lithium diisopropylamide. [Pg.975]

Base-induced eliminative ring fission, in which both the double bond and the sulfone function take part, has been observed in thiete dioxides253. The reaction can be rationalized in terms of initial Michael-type addition to the double bond of the ring vinyl sulfone, followed by a reverse aldol condensation with ring opening. The isolation of the ether 270c in the treatment of 6c with potassium ethoxide (since the transformation 267 -> 268 is not possible in this case) is in agreement with the reaction mechanism outlined in equation 101253. [Pg.455]

In principle, numerous reports have detailed the possibility to modify an enzyme to carry out a different type of reaction than that of its attributed function, and the possibility to modify the cofactor of the enzyme has been well explored [8,10]. Recently, the possibility to directly observe reactions, normally not catalyzed by an enzyme when choosing a modified substrate, has been reported under the concept of catalytic promiscuity [9], a phenomenon that is believed to be involved in the appearance of new enzyme functions during the course of evolution [23]. A recent example of catalytic promiscuity of possible interest for novel biotransformations concerns the discovery that mutation of the nucleophilic serine residue in the active site of Candida antarctica lipase B produces a mutant (SerlOSAla) capable of efficiently catalyzing the Michael addition of acetyl acetone to methyl vinyl ketone [24]. The oxyanion hole is believed to be complex and activate the carbonyl group of the electrophile, while the histidine nucleophile takes care of generating the acetyl acetonate anion by deprotonation of the carbon (Figure 3.5). [Pg.69]

Structure and Function of Nitrogenase Douglas C. Rees, Michael K. Chan, and Jongsun Kim... [Pg.512]

In the case of alkenes simply substituted by an electron-withdrawing group (without a y-hydroxy group), the stabilized ylides give first a Michael addition and most often a subsequent prototropic shift resulting in new functionalized ylides (Scheme 8). Then a possible evolution of the resulting ylides can occur to give the final products [40-44]. [Pg.48]


See other pages where Michael functions is mentioned: [Pg.271]    [Pg.113]    [Pg.393]    [Pg.404]    [Pg.50]    [Pg.145]    [Pg.26]    [Pg.337]    [Pg.62]    [Pg.81]    [Pg.41]    [Pg.575]    [Pg.845]    [Pg.121]    [Pg.76]    [Pg.157]    [Pg.316]    [Pg.147]    [Pg.45]    [Pg.256]    [Pg.759]    [Pg.343]    [Pg.129]    [Pg.84]    [Pg.122]   


SEARCH



© 2024 chempedia.info