Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Length measurement Metric system

The metric system of measurement is an internationally agreed-upon set of units for expressing the amounts of various quantities such as length, mass, time, temperature, and so on. [Pg.324]

Scientists use the metric system to measure distance and length. They measure distance and length using a metric ruler, tape measure, or other special tools. A meter is a specific unit of measurement. A meter can be broken down into smaller parts called centimeters and millimeters. There are 100... [Pg.8]

The International System of Units, abbreviated as SI (from the French name Le Systeme International d Unites), was established in 1960 by the 11th General Conference on Weights and Measures (CGPM) as the modern metric system of measurement. The core of the Si is the seven base units for the physical quantities length, mass, time, electric current, thermodynamic temperature, amount of substance, and luminous intensity. These base units are ... [Pg.28]

To use the metric system to measure length, volume, and mass... [Pg.126]

Length in the metric system is measured by the standard unit of the meter. [Pg.38]

Scientists throughout the world use the metric system of measurement. The International System of Units (SI) or Systeme International is the official system of measurement throughont the world except for the United States. In chemistry, we nse metric and SI units for length, volume, mass, temperature, and time (see Table 2.1). [Pg.25]

Scientists measure many different quantities—length, volume, mass (weight), electric current, temperature, pressure, force, magnetic field intensity, radioactivity, and many others. The metric system and its recent extension, Systeme International d Unites (SI), were devised to make measurements and calculations as simple as possible. In this chapter, length, area, volume, and mass will be introduced. Temperature will be introduced in Sec. 2.7 and used extensively in Chap. 11. The quantities to be discussed here are presented in Table 2-1. Their units, abbreviations of the quantities and units, and the legal standards for the quantities are also included. [Pg.10]

Meter a unit of measurement of length in the metric system. One meter equals approximately 39.37 inches in the English system. [Pg.396]

You measure a length to be 0.005 m. How can this be better expressed using a metric system prefix ... [Pg.22]

The metric system, or Systeme International d Unites (SI system as it is commonly known), is the predominant system of measurement in the world. In fact, the United States is one of only about three countries that do not commonly use the metric system. The metric system attempts to eliminate odd and often difircult-to-remember conversions for measurements (5,280 feet in a mile, for example). It is a decimal-based system with standard terminology for measurements of length, volume, and mass (weight). It also uses standard prefixes to measure multiples of the standard units. [Pg.189]

In 1960 the International General Conference on Weights and Measures adopted an improved form of the metric system, The International System of Units (SI). The units of mass, length, and time are the kilogram (kg), meter (m), and second (s). The following prefixes are used for fractions and multiples ... [Pg.2]

Under an international agreement concluded in 1960, scientists throughout the world now use the International System of Units for measurement, abbreviated SI for the French Systeme Internationale d Unites. Based on the metric system, which is used in all industrialized countries of the world except the United States, the SI system has seven fundamental units (Table 1.3). These seven fundamental units, along with others derived from them, suffice for all scientific measurements. We ll look at three of the most common units in this chapter—those for mass, length, and temperature—and will discuss others as the need arises in later chapters. [Pg.10]

The metric system consists of a base unit and (sometimes) a prefix multiplier. Most scientists and healthcare providers use the metric system, and you are probably familiar with the common base units and prefix multipliers. The base units describe the type of quantity measured length, mass, or time. The SI system is sometimes called the MKS (meter, kilogram, second) system, because these are the standard units of length, mass, and time upon which derived quantities, such as energy, pressure, and force, are based. An older system is called the CGS (centimeter, gram, second) system. The derived CGS units are becoming extinct. Therefore, we will focus on the MKS units. [Pg.17]

Chemistry and physics are experimental sciences, based on measurements. Our characterization of molecules (and of everything else in the universe) rests on observable physical quantities, expressed in units that ideally would be precise, convenient and reproducible. These three requirements have always produced trade-offs. For example, the English unit of length inch was defined to be the length of three barleycorns laid end to end—a convenient and somewhat reproducible standard for an agricultural society. When the metric system was developed in the 1790s, the meter was defined to be... [Pg.1]

The measures of length, volume, mass, energy, and temperature are used to evaluate our physical and chemical environment. Table 2.2 compares the metric system with the more recently accepted SI system (International System of Units). The laboratory equipment associated with obtaining these measures is also listed. [Pg.11]

On the eve of the French Revolution, June 19, 1791, King Louis XVI of France gave his approval of the system. The next day, Louis tried to escape France but was arrested and jailed. A year later from his jail cell, Louis directed two engineers to make the measurements necessary to implement the metric system. Because of the French Revolution, it took six years to complete the required measurements. Finally, in June 1799 the Commission sur l unite de poids du Systeme Metrique decimal met and adopted the metric system. It was based on the gram as the unit of weight and the meter as the unit of length. All other measurements were to be derived from these units. The metric system was adopted For all people, for all time. ... [Pg.67]

Temperature. Temperature was not one of the original properties that the French academy deemed necessary to include in the metric system. In fact, as late as 1921, members of the 6th General Conference of the International System of Weights and Measures were still objecting to the inclusion of measurements (other than length and mass) seemingly for no other reason other than to keep the base units pure. ... [Pg.73]

The original idea of the metric system was that either approach would provide the same unit of metric volume. Unfortunately, it did not work because of the subtle differences in density caused by subtle differences in temperature. Thus, the kilogram-based milliliter equaled 1.000,027 cubic centimeters. Because of the discrepancy, the International System for Weights and Measures had to make a choice between which approach would be accepted to obtain volume measurements, and the nod was eventually given to the cubic length technique. The use of liters and milliliters in volumetric ware is therefore misleading because the unit of volume measurement should be cubic meters (cubic centimeters are used as a convenience for smaller containers). The International System of Units (SI) and the ASTM accept the use of liters and milliliters in their reports, provided that the precision of the material does not warrant cubic centimeters. Because the actual difference in one cubic centimeter is less than 3 parts in 100,000, for most work it is safe to assume that 1 cm3 is equal to 1 mL. [Pg.85]

The meter is the primary unit of length in the metric system. Its abbreviation is m. The meter is defined in such a way that it can be duplicated precisely in any well-equipped laboratory in the world. It had been defined as the distance between two marks on a metal bar kept at the Bureau of Weights and Measures in Paris. (It now has an even more precise definition.) A meter is 39.37 in. long—3.37 in. longer than a yard. [Pg.53]

The relationships between the customary units are not as systematic as the relationships between units in the metric system. Here, lengths are measured in inches, feet, yards, and miles. Weights are measured in pounds and ounces. And volumes are measured in cubic inches, cubic feet, and so forth. Below is a chart of common conversions for customary units. [Pg.182]

Time The SI base unit for time is the second (s). The frequency of microwave radiation given off by a cesium-133 atom is the physical standard used to establish the length of a second. Cesium clocks are more reliable than the clocks and stopwatches that you use to measure time. For ordinary tasks, a second is a short amount of time. Many chemical reactions take place in less than a second. To better describe the range of possible measurements, scientists add prefixes to the base units. This task is made easier because the metric system is a decimal system. The prefixes in Table 2-2 are based on multiples, or factors, of ten. These prefixes can be used with all SI units. In Section 2.2, you will learn to express quantities such as 0.000 000 015 s in scientific notation, which also is based on multiples of ten. [Pg.26]

Traditionally, measurements in the clinical laboratory have been made in metric units. In the early development of the metric system, units were referenced to length, mass, and time. The first absolute systems were based on the centimeter, gram, and second (CGS) and then the meter, kilogram, and second (MKS). The SI is a different system that was accepted internationally in 1960. The units of the system are called SI units. [Pg.5]


See other pages where Length measurement Metric system is mentioned: [Pg.76]    [Pg.131]    [Pg.20]    [Pg.335]    [Pg.22]    [Pg.706]    [Pg.52]    [Pg.20]    [Pg.635]    [Pg.180]    [Pg.233]    [Pg.160]    [Pg.245]    [Pg.66]    [Pg.67]    [Pg.75]    [Pg.192]    [Pg.808]   
See also in sourсe #XX -- [ Pg.22 ]




SEARCH



Length measuring

Length, measurement

Measurement Metric system

Measurement systems

Measures Systems

Metric measures

Metric system

Metric system for measuring length

Metric system length

© 2024 chempedia.info