Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

3-methyl-2-butyl bromide

Into a 1500 ml. round-bottomed flask place 97-5 g. of finely-powdered sodium cyanide (1), 125 ml. of water, and a few chips of porous porcelain. Attach a reflux condenser and warm on a water bath until all the sodium cyanide dissolves. Introduce a solution of 250 g. (196 ml.) of n-butyl bromide (Sections 111,35 and 111,37) in 290 ml. of pure methyl alcohol, and reflux gently on a water bath for 28-30 hours. Cool to room temperature and remove the sodium bromide which has separated by filtration through a sintered glass funnel at the pump wash the crystals with about 100 ml. of methyl alcohol. Transfer the filtrate and washings to From n caproamide by SOClj method. [Pg.408]

The rate of acetolysis of t-butyl bromide relative to that of i-propyl bromide at 25°C is 10 - , whereas the rate of acetolysis of 2-methyl-2-adamantyl bromide relative to that of 2-adamantyl bromide is 10 ... [Pg.299]

The real world of Sn reactions is not quite as simple as the discussion has so far suggested. The preceding treatment in terms of two clearly distinct mechanisms, SnI and Sn2, implies that all substitution reactions will follow one or the other of these mechanisms. This is an oversimplification. The strength of the dual mechanism hypothesis and its limitations are revealed by these relative rates of solvolysis of alkyl bromides in 80% ethanol methyl bromide, 2.51 ethyl bromide, 1.00 isopropyl bromide, 1.70 /er/-butyl bromide, 8600. Addition of lyate ions increases the rate for the methyl, ethyl, and isopropyl bromides, whereas the tert-butyl bromide solvolysis rate is unchanged. The reaction with lyate ions is overall second-order for methyl and ethyl, first-order for tert-butyl, and first- or second-order for the isopropyl member, depending upon the concentrations. Similar results are found in other solvents. These data show that the methyl and ethyl bromides solvolyze by the Sn2 mechanism, and tert-butyl bromide by the SnI mech-... [Pg.428]

Obtain energies ior 2-methyl-2-butyl bromide, 3-metbyl-... [Pg.91]

Carbocations initially formed upon addition of an electrophile to an alkene may be able to undergo skeletal rearrangement depending on whether or not a more stable cation exists and, if it does exist, whether or not it can be reached via a low-energy pathway. Consider addition of HBr to 3-methyl-1-butene, the product of which is 2-methyl-2-butyl bromide. [Pg.110]

The most thoroughly investigated compounds are the alkyl-pyridines. Coleman and Fuoss compared the reactions of pyridine, 4-picoline, and 4-isopropylpyridine with n-butyl bromide and found a steady increase in the rate in the order given the activation energies are 16.0,15.95, and 15.6 kcal per mole, respectively. Brown and Cahn carried out a detailed study of the reactions of 2-, 3-, and 4-alkyl-pyridines with methyl, ethyl, and isopropyl iodides in nitrobenzene the results are given in Table II. These data show the higher activation... [Pg.11]

A treatment of 2-butyltelluroaniline with an equimolar amount of bromoacetic acid results in spontaneous cyclization of the formed telluronium salt 31 to give 1-butylbenzotellurazinonium bromide 30. That the alkylation occurs at the tellurium and not at the nitrogen atom of 2-butyltelluroaniline has been proved by the isolation of the methyl ester of 31 in 60% yield when the amine was coupled with methyl bromoacetate under the same reaction conditions. Elimination of butyl bromide from 30 readily occurs on heating of its DMF solution leading to 2//-l,4-benzotellurazin-3(4//)-one 32 in 90% yield. [Pg.15]

Phenylacetonitrile is alkylated with secondary butyl bromide and the resultant nitrile is hydrolyzed to 3-methyl-2-phenylvaleric acid. The acid is converted to the acid chioride with thionyl chloride and the acid chloride is in turn reacted with 1-methyl-4-piperidinol. Finally dimethyl sulfate is reacted with the ester. [Pg.1185]

Propyl-methyl-carbinyl allyl barbituric acid (also called allyl 1-methyl-butyl barbituric acid) may be prepared as follows 1 mol of propyl-methyl-carbinyl barbituric acid is dissolved in a suitable vessel In a 10 to 35% aqueous solution of 1 mol of potassium hydroxide. To this are added somewhat in excess of 1 mol of allyl bromide, and alcohol equal to about 10% of the total volume of the solution. The vessel Is agitated for 50 to 75 hours. At the end of this time, the solution, which may still exhibit two layers, is concentrated to about one-half its volume to remove the excess allyl bromide and the alcohol. On cooling, an oily layer, which is propyl-methyl-carbinyl allyl barbituric acid, separates out as a sticky viscous mass. It is dried, washed with petroleum ether, and dissolved in the minimum amount of benzene. Any unreacted propyl-methyl-carbinyl barbituric acid, which does not dissolve, is filtered off. The addition of petroleum ether to the clear filtrate causes the propyl-methyl-carbinyl allyl barbituric acid to precipitate as an oily mass. [Pg.1370]

N-tert-Butyl-2-(5-benzyloxy-6-hydroxy-methyl-2-pyr idyl)-2-hydroxy acetamide Pirbuterol Butyl bromide Bufexamac Bupivacaine Fenipentol sec-Butyl bromide... [Pg.1619]

The method described is successfully used for the alkylation and aralkylation of ethyl and /-butyl phenylacetate.3 The alkylation of ethyl phenylacetate with methyl iodide, M-butyl bromide, benzyl chloride, and a-phenylethyl chloride affords the corresponding pure monoalkylation products in 69%, 91%, 85%, and 70% (erythro isomer) yields, respectively. The alkylation of /-butyl phenylacetate with methyl iodide, M-butyl bromide, a-phenylethyl chloride, and /3-phenylethyl bromide gives the corresponding pure monoalkylated products in 83%, 86%, 72-73%, and 76% yields, respectively. [Pg.74]

Certain of the monoalkylated ethyl phenylacetates have been further alkylated with alkyl and aralkyl halides to produce the corresponding disuhstituted phenylacetic esters.4 Ethyl 2-phenyl-propanoate has been alkylated by methyl iodide to give pure ethyl 2-methyl-2-pheny]propanoate in 81% yield. Similarly, the alkylations of ethyl 2-phenylhexanoate with methyl iodide, M-butyl bromide, and benzyl chloride gave the corresponding pure dialkylated products in 73%, 92%, and 72% yields, respectively. [Pg.74]

Trimethyl-l-pentene, methyl iodide, f-butyl chloride, r-butyl bromide (Matheson Coleman and Co.) and f-butyl iodide (Eastman Kodak) were obtained in highest purity and were distilled over calcium hydride or molecular sieves and stored at Dry-Ice temperature. [Pg.89]

Polarization also occurs in coupling and disproportionation reactions of Grignard reagents with alkyl halides. The vinyl protons of isobutene produced in the reaction of t-butylmagnesium chloride with t-butyl bromide show A/E polarization as do the methyl protons of isobutane (Ward et al., 1970). Similar results arise in the reaction of diethyl-magnesium with organic halides (Kasukhin et al., 1972). [Pg.115]

Methyl bromide Methyl butyl ketone, see 2-Hexanone 7.6... [Pg.233]

Methyl n-amyl carbinol from methyl n-amyl ketone) Methyl n-butyl carbinol from methyl n-butyl ketone) Methyl t o-propyl carbinol Di-n-butyl carbinol from n-butyl bromide)... [Pg.1203]

Fig. 1.1. Crystal structure of lithium enolate of methyl -butyl ketone in a structure containing four Li+, two enolates, and one HMDA anions, one bromide ion, and two TMEDA ligands. Reproduced from Angew. Chem. Int. Ed. Engl., 35, 1322 (1996), by permission of Wiley-VCH. Fig. 1.1. Crystal structure of lithium enolate of methyl -butyl ketone in a structure containing four Li+, two enolates, and one HMDA anions, one bromide ion, and two TMEDA ligands. Reproduced from Angew. Chem. Int. Ed. Engl., 35, 1322 (1996), by permission of Wiley-VCH.
Xu, M. Basile, F. Voorhees, K. J. Differentiation and classification of user-specified bacterial groups by in situ thermal hydrolysis and methylation of whole bacterial cells with tert-butyl bromide chemical ionization ion trap mass spectrometry. Anal. Chim. Acta 2000, 418,119-128. [Pg.298]

Cool flame behaviour of acetaldehyde is apparently eliminated by tert-butyl bromide, and reduced by methyl iodide. [Pg.312]

Figure 10 The dependence of conductivity on concentration for a mixture of aluminium bromide and tert-butyl bromide (mole ratio 1 1) in methyl bromide... Figure 10 The dependence of conductivity on concentration for a mixture of aluminium bromide and tert-butyl bromide (mole ratio 1 1) in methyl bromide...
From Ingold, Structure and Mechanism in Organic Chemistry, 315. See Ingold, with L. C. Bateman, K. A. Cooper, and E. D. Hughes, "Mechanism of Substitution at a Saturated Carbon Atom. Pt. XIII. Mechanism Operative in the Hydrolysis of Methyl, Ethyl, Isopropyl, and Tert.-Butyl Bromides in Aqueous Solutions," JCS... [Pg.236]

The analogue, t-butyl methyl iminodicarboxylate 25, is obtained by the reaction of methanol with t-butyl oxamate (24) in the presence of lead tetraacetate. Its stable non-hygroscopic potassium salt is converted into alkyl derivatives 26 by the action of alkyl halides such as butyl bromide, allyl bromide, propargyl bromide and ethyl bromoacetate. The products are hydrolysed by trifluoroacetic acid to salts of primary amines, whereas... [Pg.542]


See other pages where 3-methyl-2-butyl bromide is mentioned: [Pg.159]    [Pg.216]    [Pg.229]    [Pg.482]    [Pg.334]    [Pg.335]    [Pg.334]    [Pg.335]    [Pg.110]    [Pg.38]    [Pg.54]    [Pg.683]    [Pg.433]    [Pg.438]    [Pg.120]    [Pg.683]    [Pg.482]    [Pg.10]    [Pg.106]    [Pg.156]    [Pg.111]    [Pg.28]    [Pg.61]    [Pg.61]   
See also in sourсe #XX -- [ Pg.6 , Pg.6 ]




SEARCH



4- Methyl-3- - -bromid

Butyl bromide

Butyl-methyl

Butylated butyl bromide

Methyl bromide

© 2024 chempedia.info