Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

2-methyl-2-butene. reaction with

The mechanism of Lewis acid-catalysed ene reactions was studied for reaction of 2-methyl-butene 44 with formaldehyde in the presence of diethylaluminium chloride in toluene 92... [Pg.182]

Ene-additions of alkenes and dienes to silene 6 are considerably slower than [2 + 4]-cycloadditions. cA-Substitution in the ene component of the reaction causes a small acceleration in rate relative to fraws-substitution, as illustrated in Table 2 by the relative rate constants for reaction of 6 with cis- and rraws-2-butene. Reaction with cis, trans-2,4-hexadiene produces only a single adduct (66 equation 51), corresponding to selective ene-reaction with the cA-methyl group in the diene. [Pg.987]

Like butadiene, allene undergoes dimerization and addition of nucleophiles to give 1-substituted 3-methyl-2-methylene-3-butenyl compounds. Dimerization-hydration of allene is catalyzed by Pd(0) in the presence of CO2 to give 3-methyl-2-methylene-3-buten-l-ol (1). An addition reaction with. MleOH proceeds without CO2 to give 2-methyl-4-methoxy-3-inethylene-1-butene (2)[1]. Similarly, piperidine reacts with allene to give the dimeric amine 3, and the reaction of malonate affords 4 in good yields. Pd(0) coordinated by maleic anhydride (MA) IS used as a catalyst[2]. [Pg.450]

In the petroleum (qv) industry hydrogen bromide can serve as an alkylation catalyst. It is claimed as a catalyst in the controlled oxidation of aHphatic and ahcycHc hydrocarbons to ketones, acids, and peroxides (7,8). AppHcations of HBr with NH Br (9) or with H2S and HCl (10) as promoters for the dehydrogenation of butene to butadiene have been described, and either HBr or HCl can be used in the vapor-phase ortho methylation of phenol with methanol over alumina (11). Various patents dealing with catalytic activity of HCl also cover the use of HBr. An important reaction of HBr in organic syntheses is the replacement of aHphatic chlorine by bromine in the presence of an aluminum catalyst (12). Small quantities of hydrobromic acid are employed in analytical chemistry. [Pg.291]

Perhaps the most striking difference between conjugated and nonconjugated dienes is that conjugated dienes undergo an addition reaction with alkenes to yield substituted cyclohexene products. For example, 1,3-butadiene and 3-buten-2-one give 3-cycIohexenyl methyl ketone. [Pg.492]

A. Nucleophilic Attack on Carbon. —(/) Activated Olefins. A study of triarylphosphine-catalysed dimerization of acrylonitrile to 2-methylene-glutaronitrile (26) and 1,4-dicyano-l-butene (27) has established a balance between phosphine nucleophilicity and protolytic strength of the solvent. The reaction of methyl vinyl ketone with triphenylphosphine in triethyl-silanol gave only 3-methylene-2,6-heptadienone (28). [Pg.5]

In an effort to further support the proposed mechanisms for the Y+propene reaction, we have examined the reactions of Y with four isomeric butenes, which are essentially propene molecules with one additional methyl group (Fig. 31). Based on estimated potential energy barrier heights22 and thermodynamics (Fig. 32))22-31-34,i56,i57 q js eXpected that analogous product channels to those observed for propene should be seen for the butenes. Therefore, a comparison of reactions of butene isomers to reactions with propene should allow us to further test the validity of the proposed mechanisms. Here we briefly summarize our most notable conclusions from this work. [Pg.255]

Table I gives the compositions of alkylates produced with various acidic catalysts. The product distribution is similar for a variety of acidic catalysts, both solid and liquid, and over a wide range of process conditions. Typically, alkylate is a mixture of methyl-branched alkanes with a high content of isooctanes. Almost all the compounds have tertiary carbon atoms only very few have quaternary carbon atoms or are non-branched. Alkylate contains not only the primary products, trimethylpentanes, but also dimethylhexanes, sometimes methylheptanes, and a considerable amount of isopentane, isohexanes, isoheptanes and hydrocarbons with nine or more carbon atoms. The complexity of the product illustrates that no simple and straightforward single-step mechanism is operative rather, the reaction involves a set of parallel and consecutive reaction steps, with the importance of the individual steps differing markedly from one catalyst to another. To arrive at this complex product distribution from two simple molecules such as isobutane and butene, reaction steps such as isomerization, oligomerization, (3-scission, and hydride transfer have to be involved. Table I gives the compositions of alkylates produced with various acidic catalysts. The product distribution is similar for a variety of acidic catalysts, both solid and liquid, and over a wide range of process conditions. Typically, alkylate is a mixture of methyl-branched alkanes with a high content of isooctanes. Almost all the compounds have tertiary carbon atoms only very few have quaternary carbon atoms or are non-branched. Alkylate contains not only the primary products, trimethylpentanes, but also dimethylhexanes, sometimes methylheptanes, and a considerable amount of isopentane, isohexanes, isoheptanes and hydrocarbons with nine or more carbon atoms. The complexity of the product illustrates that no simple and straightforward single-step mechanism is operative rather, the reaction involves a set of parallel and consecutive reaction steps, with the importance of the individual steps differing markedly from one catalyst to another. To arrive at this complex product distribution from two simple molecules such as isobutane and butene, reaction steps such as isomerization, oligomerization, (3-scission, and hydride transfer have to be involved.
Somei and co-workers made extensive use of the Heck reaction with haloindoles in their synthetic approaches to ergot and other alkaloids [26, 40, 41, 240-249]. Thus, 4-bromo-l-carbomethoxyindole (69%) [26], 7-iodoindole (91%) (but not 7-iodoindoline or l-acetyl-7-iodoindoline) [40, 41], and l-acetyl-5-iodoindoline (96%) [41] underwent coupling with methyl acrylate under standard conditions (PdlOAc /PhsP/EtjN/DMF/100 °C) to give the corresponding (E)-indolylacrylates in the yields indicated. The Heck coupling of methyl acrylate with thallated indoles and indolines is productive in some cases [41, 241, 246]. For example, reaction of (3-formylindol-4-yl)thallium bis-trifluoroacetate (186) affords acrylate 219 in excellent yield [241], Similarly, this one-pot thallation-palladation operation from 3-formylindole and methyl vinyl ketone was used to synthesize 4-(3-formylindol-4-yl)-3-buten-2-one (86% yield). [Pg.123]

Somei adapted this chemistry to syntheses of (+)-norchanoclavine-I, ( )-chanoclavine-I, ( )-isochanoclavine-I, ( )-agroclavine, and related indoles [243-245, 248]. Extension of this Heck reaction to 7-iodoindoline and 2-methyl-3-buten-2-ol led to a synthesis of the alkaloid annonidine A [247]. In contrast to the uneventful Heck chemistry of allylic alcohols with 4-haloindoles, reaction of thallated indole 186 with 2-methyl-4-trimethylsilyl-3-butyn-2-ol affords an unusual l-oxa-2-sila-3-cyclopentene indole product [249]. Hegedus was also an early pioneer in exploring Heck reactions of haloindoles [250-252], Thus, reaction of 4-bromo-l-(4-toluenesulfonyl)indole (11) under Heck conditions affords 4-substituted indoles 222 [250], Murakami described the same reaction with ethyl acrylate [83], and 2-iodo-5-(and 7-) azaindoles undergo a Heck reaction with methyl acrylate [19]. [Pg.124]

Hegedus synthesis of ( )-clavicipitic acid //-acetyl methyl ester culminated in the Pd-induced cyclization of 238 to 239, the latter of which was reduced to the target mixture [251], Substrate 238 was prepared via a Heck reaction with the corresponding 4-bromo compound 223 and 2-methyl-3-buten-2-ol (83%). The cyclization also occurs with tosic acid (97%). [Pg.128]

Nearly quantitative generation of l,3-bis(methylthio)allyllithium was proved, as this solution yielded l,3-bis(methyIthio)propene (88-89%) and l,3-bis(methylthio)-l-butene (89%) by reaction with methanol and methyl iodide, respectively. The checkers found that lithium diisopropylamide can be replaced by w-butyllithium without any trouble for the generation of l,3-bis(methylthio)allyllithium, simplifying the procedure considerably at least in this particular case. Subsequent reaction with propionaldehyde gave l,3-bis(methylthio)-l-hexen-4-ol in 85% yield, and no appreciable amount of by-product, such as the addition product of w-hutyllithium with propionaldehyde or with the intermediate 1.3-bis(methylthio)propene, was formed. [Pg.12]

BUTANAL, l-d—2-METHYL-, 51, 31 erythro-2,3-Butanediol monomesylate, by reaction of trans-2-butene oxide with methanesulfonic acid, 51, 11 3,5,1,7-[1,2,3,4]Butanetetrayl-naphthalene, decahydro-, 53, 30... [Pg.126]

Copper-catalyzed monoaddition of hydrogen cyanide to conjugated alkenes proceeded very conveniently with 1,3-butadiene, but not with its methyl-substituted derivatives. The most efficient catalytic system consisted of cupric bromide associated to trichloroacetic acid, in acetonitrile at 79 °C. Under these conditions, 1,3-butadiene was converted mainly to (Z )-l-cyano-2-butene, in 68% yield. A few percents of (Z)-l-cyano-2-butene and 3-cyano-1-butene (3% and 4%, respectively) were also observed. Polymerization of the olefinic products was almost absent. The very high regioselectivity in favor of 1,4-addition of hydrogen cyanide contrasted markedly with the very low regioselectivity of acetic acid addition (vide supra). Methyl substituents on 1,3-butadiene decreased significantly the efficiency of the reaction. With isoprene and piperylene, the mononitrile yields were reduced... [Pg.556]

However, coUisional deactivation in solution is so effective that no vibration-ally excited species is present. The reaction of photochemicaUy generated methylene with 2-methylpropene-l-)- C yields, 2-methyl-butene, which is formed by allylic insertion. In the liquid phase 2 % of the rearranged product labeled in the 3-position are formed, whereas in the gas phase 8% of this olefin can be isolated. This can be interpreted as follows 4% of 2-methyl-butene in solution and 16% of 2-methyl-butene in the gas phase are formed by an abstraction-recombination mechanism involving triplet methylene 96). [Pg.108]

Isobutylene is the most chemically reactive of the butylene isopiers. If the objective is just to get the isobutylene out of the C4 stream, it can be removed by reaction with methanol (CH3OH) to make MTBE (methyl tertiary butyl ether), by reaction with water to make TBA (tertiary butyl alcohol), by polymerization, or by solvent extraction. After that, butene-1 can be removed by selective adsorption or by distillation. That leaves the butene-2 components, together with iso- and normal butane, which are generally used as feed to an alkylation plant. [Pg.90]

It is important to note that, while the primary product Cg carbenium ions that are formed (after reaction with 2-butene or 1-butene) are secondary, they can undergo hydride shift or methyl shift and form a tertiary carbenium ion in each case. In that case the driving force is diminished for either of the two tertiary Cg carbenium ions to abstract a hydride ion from i-butane since this now becomes a transition from a large tertiary carbenium ion to a smaller tertiary carbenium ion. Nevertheless, this hydride transfer can still occur due to the high ratio of i-butane to tertiary Cg carbenium ion that exists in the reaction medium. At the same time the tertiary Cg carbenium ion may get alkylated with another butylene molecule to make the more stable C12 carbenium ion, which would then lead to heavies. [Pg.452]


See other pages where 2-methyl-2-butene. reaction with is mentioned: [Pg.253]    [Pg.430]    [Pg.65]    [Pg.411]    [Pg.414]    [Pg.167]    [Pg.745]    [Pg.647]    [Pg.232]    [Pg.50]    [Pg.647]    [Pg.491]    [Pg.872]    [Pg.298]    [Pg.264]    [Pg.266]    [Pg.14]    [Pg.362]    [Pg.268]    [Pg.940]    [Pg.1148]    [Pg.551]    [Pg.113]    [Pg.113]    [Pg.149]    [Pg.5]    [Pg.34]   


SEARCH



2 Methyl 2 butene reaction

2- Methyl-2-butene reaction with hydrogen halides

2-Methyl-2-butenal

2-Methyl-2-butene

2-methyl-2-butene. reaction with borane

3- Methyl-2-butenal, reaction with

3-Methyl-2-buten

Butene reactions

Butenes, reaction with

© 2024 chempedia.info