Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methionine from 5-methyltetrahydrofolate

In mammals and in the majority of bacteria, cobalamin regulates DNA synthesis indirectly through its effect on a step in folate metabolism, catalyzing the synthesis of methionine from homocysteine and 5-methyltetrahydrofolate via two methyl transfer reactions. This cytoplasmic reaction is catalyzed by methionine synthase (5-methyltetrahydrofolate-homocysteine methyl-transferase), which requires methyl cobalamin (MeCbl) (253), one of the two known coenzyme forms of the complex, as its cofactor. 5 -Deoxyadenosyl cobalamin (AdoCbl) (254), the other coenzyme form of cobalamin, occurs within mitochondria. This compound is a cofactor for the enzyme methylmalonyl-CoA mutase, which is responsible for the conversion of T-methylmalonyl CoA to succinyl CoA. This reaction is involved in the metabolism of odd chain fatty acids via propionic acid, as well as amino acids isoleucine, methionine, threonine, and valine. [Pg.100]

Methionine synthase deficiency (cobalamin-E disease) produces homocystinuria without methylmalonic aciduria. This enzyme mediates the transfer of a methyl group from methyltetrahydrofolate to homocysteine to yield methionine (Fig. 40-4 reaction 4). A cobalamin group bound to the enzyme is converted to methylcobalamin prior to formation of methionine. [Pg.677]

The best characterized B 12-dependent methyltransferases is methionine synthase (Figure 15.11) from E. coli, which catalyses the transfer of a methyl group from methyltetrahydrofolate to homocysteine to form methionine and tetrahydrofolate. During the catalytic cycle, B12 cycles between CH3-Co(in) and Co(I). However, from time to time, Co(I) undergoes oxidative inactivation to Co(II), which requires reductive activation. During this process, the methyl donor is S-adenosylmethionine (AdoMet) and the electron donor is flavodoxin (Fid) in E. coli, or methionine synthase reductase (MSR) in humans. Methionine synthase... [Pg.266]

This cofactor is involved in the synthesis of acetic acid from C02,869 methionine from homocysteine (catalyzed by IV-methyltetrahydrofolate-homocysteine methyl transferase)870 and in the... [Pg.642]

Vitamin B12 is a biologically active corrinoid, a group of cobalt-containing compounds with macrocyclic pyrrol rings. Vitamin B12 functions as a cofactor for two enzymes, methionine synthase and L-methylmalonyl coenzyme A (CoA) mutase. Methionine synthase requires methylcobalamin for the methyl transfer from methyltetrahydrofolate to homocysteine to form methionine tetrahy-drofolate. L-methylmalonyl-CoA mutase requires adenosylcobalamin to convert L-methylmalonyl-CoA to succinyl-CoA in an isomerization reaction. An inadequate supply of vitamin B12 results in neuropathy, megaloblastic anemia, and gastrointestinal symptoms (Baik and Russell, 1999). [Pg.343]

Scheme 2 Two-step synthesis of methionine from homocysteine catalyzed by methionine synthase and using methylcobalamin (MeCbl) derived from N -methyltetrahydrofolate and cob(l)alamin (Cbl(l)). Scheme 2 Two-step synthesis of methionine from homocysteine catalyzed by methionine synthase and using methylcobalamin (MeCbl) derived from N -methyltetrahydrofolate and cob(l)alamin (Cbl(l)).
Fig ure 11 Schematic illustration of the cobalamin-dependent enzymatic biosynthesis of methionine via methyl-group transfer from -methyltetrahydrofolate to homocysteine... [Pg.807]

Methionine synthases are ubiquitous in both prokaryotes and eukaryotes they catalyze the transfer of methyl groups from methyltetrahydrofolate to homocysteine, producing tetrahydrofolate and methionine ... [Pg.177]

Methylcobalamin is involved in a critically important physiological transformation, namely the methylation of homocysteine (8) to methionine (9) (eq. 2) catalyzed by A/ -methyltetrahydrofolate homocysteine methyltransferase. The reaction sequence involves transfer of a methyl group first from... [Pg.112]

N5-Methyltetrahydrofolate homocysteine methyl-transferase (= methionine synthase). This reaction is essential to restore tetrahydrofolate from N5-methyltetrahydrofolate (Fig. 2). [Pg.1291]

Methylenetetrahydrofolate reductase (MTHFR) catalyzes the NAD(P)H-dependent reduction of 5,10-methylenetetrahydrofolate (CH2-THF) to 5-methyltetrahydrofolate (CH3-THF). CH3-THF then serves as a methyl donor for the synthesis of methionine. The MTHFR proteins and genes from mammalian liver and E. coli have been characterized,12"15 and MTHFR genes have been identified in S. cerevisiae16 and other organisms. The MTHFR of E. coli (MetF) is a homotetramer of 33-kDa subunits that prefers NADH as reductant,12 whereas mammalian MTHFRs are homodimers of 77-kDa subunits that prefer NADPH and are allosterically inhibited by AdoMet.13,14 Mammalian MTHFRs have a two-domain structure the amino-terminal domain shows 30% sequence identity to E. coli MetF, and is catalytic the carboxyterminal domain has been implicated in AdoMet-mediated inhibition of enzyme activity.13,14... [Pg.19]

Two essential enzymatic reactions in humans require vitamin B12 (Figure 33-2). In one, methylcobalamin serves as an intermediate in the transfer of a methyl group from /V5-methyltetrahydrofolate to homocysteine, forming methionine (Figure 33-2A Figure 33-3, section 1). Without vitamin B12, conversion of the major dietary and storage folate, N5-... [Pg.735]

The loss of a methyl group from AdoMet in each of the reactions yields S-ad-enosylhomocysteine (AdoHcy) and this is subsequently hydrolysed to adenosine and Hey by AdoHcy-hydrolase. Hey sits at a metabolic branch point and can be remethylated to methionine by way of two reactions. One is the 5-methyltetrahydrofo-late dependent reaction catalysed by methionine synthase, which itself is reductively methylated by cobalamin (vitamin B12) and AdoMet, requiring methionine synthase reductase. 5-Methyltetrahydrofolate is generated from 5,10-methylenetetrahydrofo-late (MTHF) by MTHF reductase. The second remethylation reaction is catalysed by betaine methyltransferase, which is restricted to the liver, kidney and brain, while methionine synthase is widely distributed. [Pg.91]

The methylation of homocysteine to form methionine, with the concomitant formation of tetrahydrofolate from 5-methyltetrahydrofolate (167,168)... [Pg.443]

There may be an added benefit for adults. N 5-methyltetrahydrofolate is required for the conversion of homocysteine to methionine (Figure 33-1 Figure 33-2, reaction 1). Impaired synthesis of N 5-methyltetrahydrofolate results in elevated serum concentrations of homocysteine. Data from several sources suggest a positive correlation between elevated serum homocysteine and occlusive vascular diseases such as ischemic heart disease and stroke. Clinical data suggest that the... [Pg.751]

In contrast to coenzyme Bi2, where the alkyl moiety serves purely in a catalytic role, the alkyl group of methyl cobamides (MeCba s) is utilized as a reagent by MeCba-dependent enzymes it is only the cobamide portion of the coenzyme that is catalytic. The cobamide-dependent methyl transferases have been reviewed [11,24-27,165], Three cobamide-dependent methyl transferases have been studied in some cases, more than one protein is required. The Bi2 proteins include methionine synthase (officially called 5-methyltetrahydrofolate-L-homocysteine-S-methyltransferase [HCM] EC 2.1.1.13) MeCba-dependent enzyme from Meth-anosarcina barkeri (MT 0 and the corrinoid/Fe-S protein from Clostridium ther-moaceticum. [Pg.454]

Although numerous enzymatic reactions requiring vitamin B12 have been described, and 10 reactions for adenosylcobalamin alone have been identified, only three pathways in man have so far been recognized, one of which has only recently been identified (PI). Two of these require the vitamin in the adenosyl form and the other in the methyl form. These cobalamin coenzymes are formed by a complex reaction sequence which results in the formation of a covalent carbon-cobalt bond between the cobalt nucleus of the vitamin and the methyl or 5 -deoxy-5 -adenosyl ligand, with resulting coenzyme specificity. Adenosylcobalamin is required in the conversion of methylmalonate to succinate (Fig. 2), while methylcobalamin is required by a B12-dependent methionine synthetase that enables the methyl group to be transferred from 5-methyltetrahydrofolate to homocysteine to form methionine (Fig. 3). [Pg.166]

Homocystinuria may result from one or several abnormalities in the mechanism whereby homocysteine is methylated to form methionine. About half of the patients respond to treatment with pyridoxine and it is thought that the vitamin overcomes a block at the homocysteine/cystathionine level by mass action (C23). However, Schuh et al. (S22) have recently described a patient who responded to vitamin B12. The infant presented with severe developmental delay, homocystinuria, and a megaloblastic anemia. Treatment with cyanocobalamin was without effect but treatment with hydroxocobalamin resulted in a rapid clinical improvement, and the homocystinuria disappeared. Methionine synthetase activity in cell extracts was normal, while cultured fibroblasts showed an absolute growth requirement for methionine. The defect appeared to be limited to methyleobalamin accumulation and an inability to transfer the methyl group from 5-methyltetrahydrofolate to homocysteine. [Pg.202]

Vitamin B12 is required by only two enzymes in human metabolism methionine synthetase and L-methylmalonyl-CoA mutase. Methionine synthetase has an absolute requirement for methylcobalamin and catalyzes the conversion of homocysteine to methionine (Fig. 28-5). 5-Methyltetrahydrofolate is converted to tetrahydrofolate (THF) in this reaction. This vitamin B12-catalyzed reaction is the only means by which THF can be regenerated from 5-methyltetrahydrofolate in humans. Therefore, in vitamin B12 deficiency, folic acid can become trapped in the 5-methyltetrahydrofolate form, and THF is then unavailable for conversion to other coenzyme forms required for purine, pyrimidine, and amino acid synthesis (Fig. 28-6). All folate-dependent reactions are impaired in vitamin B12 deficiency, resulting in indistinguishable hematological abnormalities in both folate and vitamin B12 deficiencies. [Pg.308]

Figure 28-5. The reaction catalyzed by methionine synthase, a vitamin B12-requiring enzyme. In this reaction, homocystine is converted to methionine, with the simultaneous production of tetrahydrofolate (THF) from 5-methyltetrahydrofolate.Methionine can then be converted to 5-adenosyhnethionine (SAM), the universal methyl-group donor. Figure 28-5. The reaction catalyzed by methionine synthase, a vitamin B12-requiring enzyme. In this reaction, homocystine is converted to methionine, with the simultaneous production of tetrahydrofolate (THF) from 5-methyltetrahydrofolate.Methionine can then be converted to 5-adenosyhnethionine (SAM), the universal methyl-group donor.
Cobalamin is a complex molecule containing a Co atom. In the mamalian synthesis of methionine, cobalamin acts as a coenzyme by accepting the methyl group from N5-methyltetrahydrofolate and transferring it to homocysteine. The reaction is catalyzed by cobalamin-N%-methyl-THF homocysteine methyltransferase. The overall reaction is... [Pg.449]

Methylcobalamin is completely different from adenosylcobalamin because it is essentially a conduit for synthetic reactions catalyzed by methyltransferases, illustrated in Scheme 2 for the case of methionine. These reactions depend on the supemucle-ophilicity of cob(I)alamin. In one case, this species removes a methyl group from A -methyltetrahydrofolate with the formation of methylcobalamin, and then transfers this group to the acceptor homocysteine, which results in the synthesis of methionine (see Scheme 2). [Pg.65]

The key intermediate in the catalytic pathway is the supemucleophile cob(l)alamin, which attacks A -methyl-tetrahydrofolate, generating tetrahydrofolate and MeCbl. Then homocysteine (probably as its thiolate) attacks MeCbl, which yields methionine and regenerates cob(l)alamin (Scheme 2). The demethylation of A -methyltetrahydrofolate is not trivial, even for the supemucleophilic cob(l)alamin, and considerable efforts have been invested into understanding this reaction, dubbed improbable by Duilio Arigoni. The obvious mode of activation is by proton transfer to N-5 of A -methyl tetrahydrofolate, but as this is weakly basic (pAa 5.1) the nature of the proton source and mode of transfer has been difficult to pin down. Recent research from the Matthews group has shown how the reactivities of cob(I)alamin and methylcobalamin are modulated by the ligand trans to the lone pair of cob(l)alamin and methyl group of methylcobalamin (21). [Pg.71]

These tetrahydrofolate derivatives serve as donors of one-carbon units in a variety of biosyntheses. Methionine is regenerated from homocysteine by transfer of the methyl group ofF -methyltetrahydrofolate, as will be discussed shortly. We shall see in Chapter 25 that some of the carhon atoms of purines are acquired from derivatives of N lO-formyltetrahydrofolate. The methyl group of thymine, a pyrimidine, comes from N, N lO-methylenetetrahydrofolate. This tetrahydrofolate derivative can also donate a one-carhon unit in an alternative synthesis of glycine that starts with CO2 and NH4 +, a reaction catalyzed by glycine synthase (called the glycine cleavage enzyme when it operates in the reverse direction). [Pg.998]


See other pages where Methionine from 5-methyltetrahydrofolate is mentioned: [Pg.354]    [Pg.355]    [Pg.332]    [Pg.108]    [Pg.320]    [Pg.347]    [Pg.102]    [Pg.59]    [Pg.298]    [Pg.675]    [Pg.266]    [Pg.739]    [Pg.674]    [Pg.880]    [Pg.262]    [Pg.1702]    [Pg.132]    [Pg.745]    [Pg.168]    [Pg.203]    [Pg.226]    [Pg.71]   
See also in sourсe #XX -- [ Pg.11 , Pg.210 ]




SEARCH



Methyltetrahydrofolate

© 2024 chempedia.info