Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

MTHF reductase

The loss of a methyl group from AdoMet in each of the reactions yields S-ad-enosylhomocysteine (AdoHcy) and this is subsequently hydrolysed to adenosine and Hey by AdoHcy-hydrolase. Hey sits at a metabolic branch point and can be remethylated to methionine by way of two reactions. One is the 5-methyltetrahydrofo-late dependent reaction catalysed by methionine synthase, which itself is reductively methylated by cobalamin (vitamin B12) and AdoMet, requiring methionine synthase reductase. 5-Methyltetrahydrofolate is generated from 5,10-methylenetetrahydrofo-late (MTHF) by MTHF reductase. The second remethylation reaction is catalysed by betaine methyltransferase, which is restricted to the liver, kidney and brain, while methionine synthase is widely distributed. [Pg.91]

The metabolic control of methionine metabolism is complex and involves, for example, changes of enzyme levels in particular tissues, mechanisms linked to the kinetic properties of the various enzymes and their interaction with metabolic effectors [6, 7]. A particularly important metabolic effector is AdoMet. This inhibits the low Km isoenzymes of MAT, and MTHF reductase, inactivates betaine methyltransferase, but activates MAT III (the high-Km isoenzyme) and cystathionine /1-synthase. Therefore, high methionine intake and thus higher AdoMet levels favour trans-sulphuration, and when levels are low methionine is conserved. AdoHcy potently inhibits AdoMet-dependent methyltransferases and both Hey remethylating enzymes. Another important control mechanism is the export of Hey from cells into the extracellular space and plasma, which occurs as soon as intracellular levels increase [8]. [Pg.92]

A large elevation of Hey in body fluids and tissues is found in several genetic enzyme deficiencies, the homocystinurias. These include cystathionine /3-synlhase deficiency [9], the remethylation defects due to deficiency of MTHF reductase [10], methionine synthase and methionine synthase reductase deficiencies, as well as defects of intracellular cobalamin metabolism [11], namely the cblF, cblC and cblD defects. It is noteworthy that low levels of total Hey (tHcy) have been described in sulphite oxidase deficiency [12]. [Pg.93]

Figure 21-2. Metabolism of homocysteine. BHMT, betaineihomocysteine methyl-transferase CBS, cystathionine P-synthase Cob, cobalamin CTH, cystathionine y-lyase DHF, dihydrofolate DMG, dimethylglycine FAD, flavin adenine dinucleotide MAT, methionine adenosyltransferase 5-MTHF, 5-methyltetrahydrofolate 5,10-MTHF, 5,10-methylenetetrahydrofolate MTHFR, methylenetetrahydrofolate reductase MS, methionine synthase MTRR, methionine synthase reductase MTs, methyl transferases PLE pyridoxal phosphate SAH, S-adenosylhomocysteine SAHH, SAH hydrolase SAM, 5-adenosylmethionine SHMT, serine hydroxymethyltransferase THF, tetrahydrofolate Zn, zinc. Figure 21-2. Metabolism of homocysteine. BHMT, betaineihomocysteine methyl-transferase CBS, cystathionine P-synthase Cob, cobalamin CTH, cystathionine y-lyase DHF, dihydrofolate DMG, dimethylglycine FAD, flavin adenine dinucleotide MAT, methionine adenosyltransferase 5-MTHF, 5-methyltetrahydrofolate 5,10-MTHF, 5,10-methylenetetrahydrofolate MTHFR, methylenetetrahydrofolate reductase MS, methionine synthase MTRR, methionine synthase reductase MTs, methyl transferases PLE pyridoxal phosphate SAH, S-adenosylhomocysteine SAHH, SAH hydrolase SAM, 5-adenosylmethionine SHMT, serine hydroxymethyltransferase THF, tetrahydrofolate Zn, zinc.
Figure 21-3. The methionine synthase reaction. Methionine synthase catalyzes the remethylation of homocysteine to methionine. In the first half reaction (1), a methyl group is transferred from 5-methyl tetrahydrofolate (5-MTHF) to the reduced form of cobalamin [Cob(I)], generating methyl-cobalamin [Methyl-Cob(III)] and tetrahydrofolate (THF). During the second half reaction (2), the methyl group is transferred from methylcobalamin to homocysteine, generating methionine. During the catalytic reaction, Cob(I) occasionally becomes oxidized, producing an inactive form of cobalamin, cob(II)alamin [Cob(II)]. The enzyme methionine synthase reductase (MTRR) then reactivates Cob(II) through reductive methylation, producing methyl-Cob(III). SAM, 5-adenosylmethionine SAH, 5-adeno-sylhomocysteine. Figure 21-3. The methionine synthase reaction. Methionine synthase catalyzes the remethylation of homocysteine to methionine. In the first half reaction (1), a methyl group is transferred from 5-methyl tetrahydrofolate (5-MTHF) to the reduced form of cobalamin [Cob(I)], generating methyl-cobalamin [Methyl-Cob(III)] and tetrahydrofolate (THF). During the second half reaction (2), the methyl group is transferred from methylcobalamin to homocysteine, generating methionine. During the catalytic reaction, Cob(I) occasionally becomes oxidized, producing an inactive form of cobalamin, cob(II)alamin [Cob(II)]. The enzyme methionine synthase reductase (MTRR) then reactivates Cob(II) through reductive methylation, producing methyl-Cob(III). SAM, 5-adenosylmethionine SAH, 5-adeno-sylhomocysteine.
The most extensively studied polymorphic alleles are those of 5,10-methylenetetrahydofolate reductase (MTHFR), the enzyme responsible for the irreversible reduction of 5,10-MTHF to 5-methyltetrahydrofoiate (5-MTHF), the methyl donor of homocysteine to methionine. A single point C to T mutation at base pair 677 (C677T), causing a substitution of valine for alanine, leads to a thermolabile protein with reduced enzymatic activity. The homozygous T/T enzyme has an incidence of around 12% in Asian and Caucasian populations, and a loss of enzyme activity of about 50%, and the heterozygous C/T variant can have an incidence of up to 50% in some populations, with a lesser degree of enzyme inactivity. ... [Pg.1113]

Methyltetrahydrofolate (5-MTHF). The circulating form of folic acid in humans. 5-MTHF is produced by 5,10-methylenetetrahydrofolate via the action of MTFH reductase (MTHFR). 5-MTHF scavenges peroxynitrites, the main BH4 oxidant, and helps to BH4 regeneration inside the human vascular wall. It is considered the key mediator of folic acid s vascular effects (as in the presence of the C677T mutation in MTHFR gene that reduces enzyme s activity almost by half). [Pg.81]

Figure 44.1 Folate-mediated one carbon metabolism network. Enzymes and transport proteins are enclosed in rectangular boxes. AHCY S-adenosyDiomocys-teine hydrolase AICART 5-aminoimidazole carboxamide ribonucleotide transferase BHMT betaine homocysteine methyltransferase CBS cystathionine beta-synthase DHFR dihydrofolate reductase FR folate receptor FTCD formimidoyltransferase cyclodeaminase GART glycinamide ribonucleotide transformylase MATs (MATI/MATIII) adenosylmethionine transferase enzyme I/III MS methionine synthase MSR methionine synthase reductase MT methyltransferase MTHFD methylenetetrahydrofolate dehydrogenase MTHFR 5,10-methylenete-trahydrofolate reductase MTHFS 5,10-methylenetetrahydrofolate synthase. RFC reduced folate AdoMet 5-adenosylmethionine AdoHcy S-adenosylhomocysteine Hey homocysteine SHMT serine hydroxymethyltransferase TS thymidylate synthase. Figure 44.1 Folate-mediated one carbon metabolism network. Enzymes and transport proteins are enclosed in rectangular boxes. AHCY S-adenosyDiomocys-teine hydrolase AICART 5-aminoimidazole carboxamide ribonucleotide transferase BHMT betaine homocysteine methyltransferase CBS cystathionine beta-synthase DHFR dihydrofolate reductase FR folate receptor FTCD formimidoyltransferase cyclodeaminase GART glycinamide ribonucleotide transformylase MATs (MATI/MATIII) adenosylmethionine transferase enzyme I/III MS methionine synthase MSR methionine synthase reductase MT methyltransferase MTHFD methylenetetrahydrofolate dehydrogenase MTHFR 5,10-methylenete-trahydrofolate reductase MTHFS 5,10-methylenetetrahydrofolate synthase. RFC reduced folate AdoMet 5-adenosylmethionine AdoHcy S-adenosylhomocysteine Hey homocysteine SHMT serine hydroxymethyltransferase TS thymidylate synthase.

See other pages where MTHF reductase is mentioned: [Pg.99]    [Pg.99]    [Pg.193]    [Pg.228]    [Pg.127]    [Pg.70]   
See also in sourсe #XX -- [ Pg.91 , Pg.93 ]




SEARCH



MTHF

© 2024 chempedia.info