Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methanol-production plants

Larger methanol production plants are more efficient than smaller ones. The size of a large (called world-scale) methanol plant is in the range of2000-2500 metric tons per day. If methanol were to become a widely used alternative fuel, many more methanol production plants would be required. Plants as large as 10,000 metric tons per day have been postulated to serve the demand created by transportation vehicles. [Pg.8]

Methanol production plants consist of three parts ... [Pg.52]

The converged mass and heat balances and the exergy loss profiles produced by the Aspen Plus simulator can help in assessing the thermodynamic performance of distillation columns. The exergy values are estimated from the enthalpy and entropy of the streams generated by the simulator. In the following examples, the assessment studies illustrate the use of exergy in the separation sections of a methanol production plant, a 15-component two-column... [Pg.235]

Since in almost all methanol production plants only some part of the raw gas is carried through a CO shift conversion unit, COS hydrolysis is more important for coal gases than COS hydrogenation which takes place parallel with the water gas reaction. The equilibrium equation for COS hydrolysis is... [Pg.85]

Pellegrini LA, Soave G, Gamba S, Lange S (2011) Economic analysis of a combined energy-methanol production plant. Appl Energy 88 4891 897... [Pg.306]

Produced from a.tura.1 Ga.s, Cost assessments of methanol produced from natural gas have been performed (13—18). Projections depend on such factors as the estimated costs of the methanol production faciUty, the value of the feedstock, and operating, maintenance, and shipping costs. Estimates vary for each of these factors. Costs also depend on the value of oil. Oil price not only affects the value of natural gas, it also affects the costs of plant components, labor, and shipping. [Pg.423]

Methanol, a clean burning fuel relative to conventional industrial fuels other than natural gas, can be used advantageously in stationary turbines and boilers because of its low flame luminosity and combustion temperature. Low NO emissions and virtually no sulfur or particulate emissions have been observed (83). Methanol is also considered for dual fuel (methanol plus oil or natural gas) combustion power boilers (84) as well as to fuel gas turbines in combined methanol / electric power production plants using coal gasification (85) (see Power generation). [Pg.88]

High temperature steam reforming of natural gas accounts for 97% of the hydrogen used for ammonia synthesis in the United States. Hydrogen requirement for ammonia synthesis is about 336 m /t of ammonia produced for a typical 1000 t/d ammonia plant. The near-term demand for ammonia remains stagnant. Methanol production requires 560 m of hydrogen for each ton produced, based on a 2500-t/d methanol plant. Methanol demand is expected to increase in response to an increased use of the fuel—oxygenate methyl /-butyl ether (MTBE). [Pg.432]

E. Supp and A. T. Weschler, "Conversion of Ammonia Plants to Methanol Production using Lurgi s Combined Reforming Technology", HTChE 1992 SpringMeeting, New Orleans. [Pg.282]

A typical configuration for a methanol carbonylation plant is shown in Fig. 1. The feedstocks (MeOH and CO) are fed to the reactor vessel on a continuous basis. In the initial product separation step, the reaction mixture is passed from the reactor into a flash-tank where the pressure is reduced to induce vapourisation of most of the volatiles. The catalyst remains dissolved in the liquid phase and is recycled back to the reactor vessel. The vapour from the flash-tank is directed into a distillation train which removes methyl iodide, water and heavier by-products (e.g. propionic acid) from the acetic acid product. [Pg.188]

Methanol was first produced commercially in 1830 by the pyrolysis of wood to produce wood alcohol. Almost a century later, a process was developed in Germany by BASF to produce synthetic methanol from coal synthesis gas. The first synthetic methanol plant was introduced by BASF in 1923 and in the United States by DuPont in 1927. In the late 1940s, natural gas replaced coal synthesis gas as the primary feedstock for methanol production. In 1966, ICI announced the development of a copper-based catalyst for use in the low-pressure synthesis of methanol. [Pg.287]

As seen from the above, conventional uses of methanol cover a wide range of products which in turn find application in a very broad cross-section of industrial and consumer goods. New end uses have continued to develop and spur the growth of methanol production. One such development is the Monsanto low pressure process that carbonylates methanol to acetic acid (6). Essentially all new acetic acid capacity now being installed is based on Monsanto technology. By 1981, eleven plants converting methanol to acetic acid are scheduled to be on stream. At capacity they will consume over 300 million gallons of methanol. [Pg.33]

Methanol synthesis plants utilizing the low-pressure process currently operate at capacities of 2 x 105 to 2 x 106 metric tons per year [15]. Such installations are composed of a synthesis gas production unit, the actual methanol synthesis reactor, and a separation and purification section. The production and purification of synthesis gas accounts for 50%-80% of the total cost of methanol production, with the remaining cost associated with the actual synthesis and purification of methanol [2, 8], Although a variety of carbonaceous feedstocks can be transformed into synthesis gas, the steam reforming of natural gas (Equation [4]) is by far the most common option, especially for large plants [2, 15-16] ... [Pg.418]

Thus, although hydrogen is used in methanol production, it can be taken straight from the steam-hydrocarbon reformer and does not require further purification and treatment as in the case of pure hydrogen production or ammonia production. The economics of methanol production are significantly affected by the thermal integration of the reformer (or other gas generation unit) with the rest of the plant. [Pg.137]


See other pages where Methanol-production plants is mentioned: [Pg.413]    [Pg.26]    [Pg.413]    [Pg.26]    [Pg.282]    [Pg.165]    [Pg.415]    [Pg.275]    [Pg.190]    [Pg.102]    [Pg.284]    [Pg.285]    [Pg.101]    [Pg.522]    [Pg.176]    [Pg.1563]    [Pg.8]    [Pg.180]    [Pg.29]    [Pg.30]    [Pg.38]    [Pg.44]    [Pg.74]    [Pg.28]    [Pg.498]    [Pg.190]    [Pg.118]    [Pg.418]    [Pg.443]    [Pg.125]    [Pg.903]    [Pg.171]   
See also in sourсe #XX -- [ Pg.413 , Pg.414 ]




SEARCH



Methanol plants

Plant products

Plants, production

Productivity plant

© 2024 chempedia.info