Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methane theoretical

Ishimaru, S. and Fukui, K., Calculations of the pseudopotential for the excess electron in water and methane, Theoret. Chim. Acta (Berlin), 39, 103,1975. [Pg.280]

Conversions per pass of NO2 to nitroparaffins tend to be significantly less than when HNO is used. When propane is nitrated with NO2, conversions are as high as 27%, but they are much less for nitrations of methane and ethane. The remaining NO2 reacts mainly to produce NO, and a considerable number of oxidation steps occur. The theoretically maximum conversion of NO2 to nitroparaffins is 66.7%. [Pg.36]

Table 6 shows the effect of varying coil oudet pressure and steam-to-oil ratio for a typical naphtha feed on the product distribution. Although in these tables, the severity is defined as maximum, in a reaUstic sense they are not maximum. It is theoretically possible that one can further increase the severity and thus increase the ethylene yield. Based on experience, however, increasing the severity above these practical values produces significantly more fuel oil and methane with a severe reduction in propylene yield. The mn length of the heater is also significantly reduced. Therefore, this is an arbitrary maximum, and if economic conditions justify, one can operate the commercial coils above the so-called maximum severity. However, after a certain severity level, the ethylene yield drops further, and it is not advisable to operate near or beyond this point because of extremely severe coking. [Pg.437]

This concept is now applied to the liquefaction of methane initially at atmospheric pressure and 105°F, 105°F being selected because it is a common industrial heat rejection temperature. The theoretical quantity of work (expressed in Btu of work equal to 778 ft-lb, of work) required to cool 1 lb of methane down to its liquefaction point and then to absorb the 219.7 Btu of latent heat of liquefaction at -258°F, is shown in Figure 3-2. It amounts to 510.8 Btu of work per pound of methane and is not to be confused with Btu of heat, although the quantities in this case are not very different. This amount of work per pound of methane is equivalent to 352 hp/MMcfd. An actual process with its expected inefficiencies would require twice this much work. [Pg.44]

In summary, starting with 105°F gas at atmospheric pressure, the theoretical work necessary to liquify one pound of methane is 510.8 Btu or 352 hp/MMcfd. The simplified liquefaction process, as illustrated, uses a turboexpander/compressor and a small propane refrigeration unit. The 41.25% efficiency breaks down as follows one-fourth contributed by the turboexpander/compressor at 35.8% efficiency one-sixteenth contributed by the mechanical propane refrigeration unit at 43% efficiency, at a moderate temperature where its efficiency is high and a large fraction—eleven-sixteenths—contributed at 58.2% efficiency by compression and Joule-Thomson condensation energy. [Pg.52]

The preceding experience did lead to a lack of confidence, and it was concluded that an impeller-by-impeller performance check should be carried out theoretically at test speed with the test gas. This idea was carried out on a cold methane compressor with nine impellers. The results of this were fruitful as can be seen from Figure 10-5, and the expected performance at various test speeds calculated in accordance with the code is shown in Figure 10-6. As a result of this work, two test speeds were... [Pg.427]

Several alternative methods have been considered in order to increase the energy density of natural gas and facilitate its use as a road vehicle fuel. It can be dissolved in organic solvents, contained in a molecular cage (clathrate), and it may be adsorbed in a porous medium. The use of solvents has been tested experimentally but there has been little improvement so far over the methane density obtained by simple compression. Clathrates of methane and water, (methane hydrates) have been widely investigated but seem to offer little advantage over ANG [4]. Theoretical comparison of these storage techniques has been made by Dignam [5]. In practical terms, ANG has shown the most promise so far of these three alternatives to CNG and LNG. [Pg.274]

The issue of the theoretical maximum storage capacity has been the subject of much debate. Parkyns and Quinn [20] concluded that for active carbons the maximum uptake at 3.5 MPa and 298 K would be 237 V/V. This was estimated from a large number of experimental methane isotherms measured on different carbons, and the relationship of these isotherms to the micropore volume of the corresponding adsorbent. Based on Lennard-Jones parameters [21], Dignum [5] calculated the maximum methane density in a pore at 298 K to be 270 mg/ml. Thus an adsorbent with 0.50 ml of micropore per ml could potentially adsorb 135 mg methane per ml, equivalent to about 205 V/ V, while a microporc volume of 0.60 mEml might store 243 V/V. Using sophisticated parallel slit... [Pg.281]

Thus, while models may suggest optimal pore spuctures to maximize methane storage, they give no indication or suggestion as to how such a material might be produced. On the other hand, simple measurement of methane uptake from variously prepared adsorbents is not sufficient to elucidate the difference in the pore structure of adsorbents. Sosin and Quinn s method of determining a PSD directly from the supercritical methane isotherm provides an important and valuable link between theoretical models and the practical production of carbon adsorbents... [Pg.284]

Adsorption of hard sphere fluid mixtures in disordered hard sphere matrices has not been studied profoundly and the accuracy of the ROZ-type theory in the description of the structure and thermodynamics of simple mixtures is difficult to discuss. Adsorption of mixtures consisting of argon with ethane and methane in a matrix mimicking silica xerogel has been simulated by Kaminsky and Monson [42,43] in the framework of the Lennard-Jones model. A comparison with experimentally measured properties has also been performed. However, we are not aware of similar studies for simpler hard sphere mixtures, but the work from our laboratory has focused on a two-dimensional partly quenched model of hard discs [44]. That makes it impossible to judge the accuracy of theoretical approaches even for simple binary mixtures in disordered microporous media. [Pg.306]

The chemical reactions that occnr in flames transform an initial reactant mixtnre into final reaction prodncts. In the case of fnel-oxygen combns-tion, the final prodncts are principally water vapor and carbon dioxide, althongh nnmerons other prodncts snch as carbon monoxide may be formed, depending on the reactant composition and other factors. If the ratio of fnel-to-oxygen is stoichiometric, the final reaction prodncts, by definition, contain no excess fnel or oxygen. Theoretically, this means that partial oxidation prodncts snch as CO (itself a fnel) are not formed. In reality, partial oxidation prodncts snch as CO or OH are formed by high tem-peratnre reactions. For example, the molar stoichiometric reaction of methane is written ... [Pg.52]

A natural gas having the volumetric composition of 90% methane, 8% ethane, and 2% nitrogen at 1 atm and 25°C is used as fuel in a power plant. To ensure complete combustion 75% excess air is also supplied at 1 atm and 25°C. Calculate (i) the lower and higher heating values of the fuel at 25°C and (ii) the theoretical maximum temperature in the boiler assuming adiabatic operation and gaseous state for all the products. [Pg.361]

Fig. 7. Isothermal cross section of the system H20-CH4-CsH8 on a water-free basis at —3° C. The points represent experimental results and the curves have been obtained from a theoretical analysis. The line AB represents the four-phase equilibrium HiHn ice G the gas G consists of almost pure methane, Hj contains only methane. Consequently, the composition of the latter two phases almost coincide in the figure, and the situation around point A has therefore been drawn separately on an enlarged scale. Fig. 7. Isothermal cross section of the system H20-CH4-CsH8 on a water-free basis at —3° C. The points represent experimental results and the curves have been obtained from a theoretical analysis. The line AB represents the four-phase equilibrium HiHn ice G the gas G consists of almost pure methane, Hj contains only methane. Consequently, the composition of the latter two phases almost coincide in the figure, and the situation around point A has therefore been drawn separately on an enlarged scale.
Although from theoretical considerations biomass yields from methane could be as high as 1.4, in laboratory-scale cultures values of about 1.0 were obtained, and in larger scale systems values were around 0.3-0.6. Methane fermentation also incurs high aeration and cooling costs. [Pg.89]

Feed gases to most, if not all, methanation systems for substitute natural gas (SNG) production are theoretically capable of forming carbon. This potential also exists for feed gases to all first-stage shift converters operating in ammonia plants and in hydrogen production plants. However, it has been demonstrated commercially over a period of many years that carbon formation at inlet temperatures in shift converters is a relatively slow reaction and that, once shifted, the gas loses its potential for carbon formation. Carbon formation has not been a common problem at the inlet to shift converters. It has been no problem at all in our bench-scale work, and it is not expected to be a problem in our pilot plant operations. [Pg.154]

Kolbel et al. (K16) examined the conversion of carbon monoxide and hydrogen to methane catalyzed by a nickel-magnesium oxide catalyst suspended in a paraffinic hydrocarbon, as well as the oxidation of carbon monoxide catalyzed by a manganese-cupric oxide catalyst suspended in a silicone oil. The results are interpreted in terms of the theoretical model referred to in Section IV,B, in which gas-liquid mass transfer and chemical reaction are assumed to be rate-determining process steps. Conversion data for technical and pilot-scale reactors are also presented. [Pg.120]

A new period in theoretical work on arenediazonium ions began with Vincent and Radom s paper in 1978. This was the first ab initio study of the methane- and benzenediazonium ions, and was carried out with a minimal (STO-3G) basis set, subject only to some (specified) symmetry constraints and a fixed CH bond length (108.3 pm). The optimized structure of the benzenediazonium ion is given in Figure 4-2. [Pg.84]

Fig. 3.13. Density-dependence of the Qo, branch line width y of methane (the dashed line is for pure vibrational dephasing, supposed to be Unear in density), (o) experimental data (with error bars) [162] Top part rotational contribution yR and its theoretical estimation in motional narrowing limit [162] (solid line) the points were obtained by subtraction of dephasing contribution y Fig. 3.13. Density-dependence of the Qo, branch line width y of methane (the dashed line is for pure vibrational dephasing, supposed to be Unear in density), (o) experimental data (with error bars) [162] Top part rotational contribution yR and its theoretical estimation in motional narrowing limit [162] (solid line) the points were obtained by subtraction of dephasing contribution y<jp from experimental HWHM y = yR + VdP-...
The notion of a pnre chemical snbstance can be related to empirically identifiable properties (e.g. sharp melting and boiling temperatures) but is nowadays understood in theoretical terms that are abstract (Johnson, 2002 Taber, 2002a). So hydrogen, methane, diamond, sodium, sodium chloride and polythene - poly(ethene) - are all considered examples of single chemical substances, although they are very different... [Pg.89]

Allyl (27, 60, 119-125) and benzyl (26, 27, 60, 121, 125-133) radicals have been studied intensively. Other theoretical studies have concerned pentadienyl (60,124), triphenylmethyl-type radicals (27), odd polyenes and odd a,w-diphenylpolyenes (60), radicals of the benzyl and phenalenyl types (60), cyclohexadienyl and a-hydronaphthyl (134), radical ions of nonalternant hydrocarbons (11, 135), radical anions derived from nitroso- and nitrobenzene, benzonitrile, and four polycyanobenzenes (10), anilino and phenoxyl radicals (130), tetramethyl-p-phenylenediamine radical cation (56), tetracyanoquinodi-methane radical anion (62), perfluoro-2,l,3-benzoselenadiazole radical anion (136), 0-protonated neutral aromatic ketyl radicals (137), benzene cation (138), benzene anion (139-141), paracyclophane radical anion (141), sulfur-containing conjugated radicals (142), nitrogen-containing violenes (143), and p-semi-quinones (17, 144, 145). Some representative results are presented in Figure 12. [Pg.359]

A number of theoretical (5), (19-23). experimental (24-28) and computational (2), (23), (29-32). studies of premixed flames in a stagnation point flow have appeared recently in the literature. In many of these papers it was found that the Lewis number of the deficient reactant played an important role in the behavior of the flames near extinction. In particular, in the absence of downstream heat loss, it was shown that extinction of strained premixed laminar flames can be accomplished via one of the following two mechanisms. If the Lewis number (the ratio of the thermal diffusivity to the mass diffusivity) of the deficient reactant is greater than a critical value, Lee > 1 then extinction can be achieved by flame stretch alone. In such flames (e.g., rich methane-air and lean propane-air flames) extinction occurs at a finite distance from the plane of symmetry. However, if the Lewis number of the deficient reactant is less than this value (e.g., lean hydrogen-air and lean methane-air flames), then extinction occurs from a combination of flame stretch and incomplete chemical reaction. Based upon these results we anticipate that the Lewis number of hydrogen will play an important role in the extinction process. [Pg.412]

Table 8.10. Theoretical efficiency for converting hydrogen, methane, and methanol into power in a fuel cell. Table 8.10. Theoretical efficiency for converting hydrogen, methane, and methanol into power in a fuel cell.
Example 15.5 A gas, which can be considered to be pure methane, is to be used as fuel in a furnace. Both the fuel gas and combustion air are both at 25°C. Calculate the theoretical flame temperature if the methane is burnt in ... [Pg.351]


See other pages where Methane theoretical is mentioned: [Pg.534]    [Pg.534]    [Pg.723]    [Pg.656]    [Pg.42]    [Pg.204]    [Pg.44]    [Pg.885]    [Pg.139]    [Pg.18]    [Pg.53]    [Pg.507]    [Pg.152]    [Pg.864]    [Pg.152]    [Pg.158]    [Pg.15]    [Pg.203]    [Pg.53]    [Pg.337]    [Pg.366]    [Pg.323]    [Pg.161]    [Pg.120]    [Pg.273]    [Pg.304]    [Pg.305]    [Pg.398]    [Pg.220]   
See also in sourсe #XX -- [ Pg.304 ]




SEARCH



Methane coordination theoretical calculations

© 2024 chempedia.info