Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Strained premixed laminar flames

Libby, R, Lihan, A., and Williams, R, Strained premixed laminar flames with nonunity Lewis numbers. Combust. Set. Technol, 34, 257, 1983. [Pg.117]

Giovangigli, V. and Smooke, M., Extinction of strained premixed laminar flames with complex chemistry. Combust. Sci. Technol., 53,23, 1987. [Pg.117]

A number of theoretical (5), (19-23). experimental (24-28) and computational (2), (23), (29-32). studies of premixed flames in a stagnation point flow have appeared recently in the literature. In many of these papers it was found that the Lewis number of the deficient reactant played an important role in the behavior of the flames near extinction. In particular, in the absence of downstream heat loss, it was shown that extinction of strained premixed laminar flames can be accomplished via one of the following two mechanisms. If the Lewis number (the ratio of the thermal diffusivity to the mass diffusivity) of the deficient reactant is greater than a critical value, Lee > 1 then extinction can be achieved by flame stretch alone. In such flames (e.g., rich methane-air and lean propane-air flames) extinction occurs at a finite distance from the plane of symmetry. However, if the Lewis number of the deficient reactant is less than this value (e.g., lean hydrogen-air and lean methane-air flames), then extinction occurs from a combination of flame stretch and incomplete chemical reaction. Based upon these results we anticipate that the Lewis number of hydrogen will play an important role in the extinction process. [Pg.412]

Darabiha, N., Candel, S., and Marble, R, The effect of strain rate on a premixed laminar flame. Combust. Flame, 64, 203, 1986. [Pg.117]

The modeling of steady-state problems in combustion and heat and mass transfer can often be reduced to the solution of a system of ordinary or partial differential equations. In many of these systems the governing equations are highly nonlinear and one must employ numerical methods to obtain approximate solutions. The solutions of these problems can also depend upon one or more physical/chemical parameters. For example, the parameters may include the strain rate or the equivalence ratio in a counterflow premixed laminar flame (1-2). In some cases the combustion scientist is interested in knowing how the system mil behave if one or more of these parameters is varied. This information can be obtained by applying a first-order sensitivity analysis to the physical system (3). In other cases, the researcher may want to know how the system actually behaves as the parameters are adjusted. As an example, in the counterflow premixed laminar flame problem, a solution could be obtained for a specified value of the strain... [Pg.404]

The relevance of premixed edge flames to turbulent premixed flames can also be understood in parallel to the nonpremixed cases. In the laminar flamelet regime, turbulent premixed flames can be viewed as an ensemble of premixed flamelets, in which the premixed edge flames can have quenching holes by local high strain-rate or preferential diffusion, corresponding to the broken sheet regime [58]. [Pg.64]

COSILAB Combustion Simulation Software is a set of commercial software tools for simulating a variety of laminar flames including unstrained, premixed freely propagating flames, unstrained, premixed burner-stabilized flames, strained premixed flames, strained diffusion flames, strained partially premixed flames cylindrical and spherical symmetrical flames. The code can simulate transient spherically expanding and converging flames, droplets and streams of droplets in flames, sprays, tubular flames, combustion and/or evaporation of single spherical drops of liquid fuel, reactions in plug flow and perfectly stirred reactors, and problems of reactive boundary layers, such as open or enclosed jet flames, or flames in a wall boundary layer. The codes were developed from RUN-1DL, described below, and are now maintained and distributed by SoftPredict. Refer to the website http //www.softpredict.com/cms/ softpredict-home.html for more information. [Pg.755]

Egolfopoulos, F.N., Zhang, H., and Zhang, Z., Wall effects on the propagation and extinction of steady, strained, laminar premixed flames. Combust. Flame, 109,237,1997. [Pg.44]

DuPont, V., M. Pourkashanian, A. P. Richardson, A. Williams, and M. J. Scott. 1996. The importance of prompt-NO formation and of NO reconversion in strained laminar binary rich partially premixed flames. In Transport phenomena in combustion. Washington, DC Taylor Francis 1 263-74. [Pg.452]

In addition to the low-strain limit, which can be used to determine laminar burning velocities, the opposed-flow configuration can also be used to determine high-strain-rate extinction limits. As the inlet velocities increase, the flame is pushed closer to the symmetry plane and the maximum flame temperature decreases. There is a flow rate beyond which a flame can no longer be sustained (i.e., it is extinguished). Figure 17.11 illustrates extinction behavior for premixed methane-air flames of varying stoichiometries. [Pg.708]

Egolfopoulos FN Dynamics and structure of unsteady, strained, laminar premixed flames, Proc Combust Inst 25 1365—1373, 1994. [Pg.153]


See other pages where Strained premixed laminar flames is mentioned: [Pg.405]    [Pg.405]    [Pg.405]    [Pg.405]    [Pg.405]    [Pg.415]    [Pg.416]    [Pg.415]    [Pg.416]    [Pg.379]    [Pg.755]    [Pg.615]    [Pg.426]    [Pg.453]   


SEARCH



Laminar flame

Laminar flame premixed

Laminar premixed

Premix

Premixed

Premixed flame

Premixed flame strained

Premixers

© 2024 chempedia.info