Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metathesis reaction type

Metathesis chemistry, histoiy of, 431-432 Metathesis depolymerization, 456-457 Metathesis polymerization, general conditions for, 440-441 Metathesis reactions, types of, 432 Methanol, 377 Methanolysis, 535... [Pg.588]

Olefins can be divided into four categories on the basis of their propensity to homodimerize (Figure 2). Type I olefins are able to undergo rapid homodimerization and whose homodimers can equally participate in CM. A CM reaction between two olefins of this type will generally result in a statistical product mixture. Type II olefins homodimerize slowly, and, unlike type I olefins, their homodimers can only be consumed with difficulty in subsequent metathesis reactions. Type III olefins are unable to undergo homodimerization, but have the capacity to undergo CM with either type I or II olefins. As with type I olefins, the reaction between either two type II or type III olefins should result in non-selective CM. Type IV olefins are inert to olefin CM, but do not inhibit the reaction therefore, they can be regarded as spectators to CM. [Pg.182]

Ca.ustlciZa.tlon, Time, particularly the high calcium type, reacts with carbonates such as Na2C02 and Li2C02 to form other hydroxides and carbonates through double decomposition or metathesis reactions as foUow ... [Pg.168]

Since then, the metathesis reaction has been extended to other types of alkenes, viz. substituted alkenes, dienes and polyenes, and to alkynes. Of special interest is the metathesis of cycloalkenes. This gives rise to a ring enlargement resulting in macrocyclic compounds and eventually poly-... [Pg.131]

Various types of unsaturated hydrocarbons have been reported to undergo metathesis reactions by contact with appropriate catalysts. A short survey is given below. It is to be expected that in the near future still more examples will be found. [Pg.133]

A remarkable feature of the metathesis reaction is that the enthalpy difference between products and reactants (AHr) is virtually zero, because the total number and the types of the chemical bonds are equal before and after the reaction. Hence, ideally, the free enthalpy of the reac-... [Pg.155]

Eq. 14) [81]. Although this transformation does not appear to be a metathesis reaction, it is thought to proceed via the formation of ruthenium carbene species and not via classical [2+2+2]-cycloaddition pathways. A rationale for the strong preference of the meta isomer 99 was provided on the basis of a metathesis-type mechanism. [Pg.252]

It has been demonstrated that group 6 Fischer-type metal carbene complexes can in principle undergo carbene transfer reactions in the presence of suitable transition metals [122]. It was therefore interesting to test the compatibility of ruthenium-based metathesis catalysts and electrophilic metal carbene functionalities. A series of examples of the formation of oxacyclic carbene complexes by metathesis (e.g., 128, 129, Scheme 26) was published by Dotz et al. [123]. These include substrates where double bonds conjugated to the pentacarbonyl metal moiety participate in the metathesis reaction. Evidence is... [Pg.259]

An obvious drawback in RCM-based synthesis of unsaturated macrocyclic natural compounds is the lack of control over the newly formed double bond. The products formed are usually obtained as mixture of ( /Z)-isomers with the (E)-isomer dominating in most cases. The best solution for this problem might be a sequence of RCAM followed by (E)- or (Z)-selective partial reduction. Until now, alkyne metathesis has remained in the shadow of alkene-based metathesis reactions. One of the reasons maybe the lack of commercially available catalysts for this type of reaction. When alkyne metathesis as a new synthetic tool was reviewed in early 1999 [184], there existed only a single report disclosed by Fiirstner s laboratory [185] on the RCAM-based conversion of functionalized diynes to triple-bonded 12- to 28-membered macrocycles with the concomitant expulsion of 2-butyne (cf Fig. 3a). These reactions were catalyzed by Schrock s tungsten-carbyne complex G. Since then, Furstner and coworkers have achieved a series of natural product syntheses, which seem to establish RCAM followed by partial reduction to (Z)- or (E)-cycloalkenes as a useful macrocyclization alternative to RCM. As work up to early 2000, including the development of alternative alkyne metathesis catalysts, is competently covered in Fiirstner s excellent review [2a], we will concentrate here only on the most recent natural product syntheses, which were all achieved by Fiirstner s team. [Pg.353]

During our efforts in profiling (comparative investigations) of several commercial available metathesis catalysts bearing NHC ligands in different types of metathesis reactions remarkable solvent effects were observed [4], Interestingly, the efficiency of most transformations studied frequently depended more on solvent and temperature effects rather than on the nature of Ru precursor and NHC ligands. [Pg.218]

Double-substitution or double-replacement reactions, also called double-decomposition reactions or metathesis reactions, involve two ionic compounds, most often in aqueous solution. In this type of reaction, the cations simply swap anions. The reaction proceeds if a solid or a covalent compound is formed from ions in solutions. All gases at room temperature are covalent. Some reactions of ionic solids plus ions in solution also occur. Otherwise, no reaction takes place. For example,... [Pg.120]

One problem in the combination of metathesis transformations using alkenes is the fact that they are equilibrium reactions. In contrast, metathesis reactions of ene-ynes are irreversible as they give 1,3-butadienes, which are usually inert under the reaction conditions. Thus, the combination of a RCM and a ROM of ene-ynes of type 6/3-48 in the presence of an alkene (e. g., ethylene) led to 6/3-49 in good yield (Scheme 6/3.13) [242]. In these transformations the terminal triple bond reacts first. The process is not suitable for the formation of six-ring heterocycles. [Pg.446]

E.O. Fischer s discovery of (CO)sW[C(Ph)(OMe)D in 1964 marks the beginning of the development of the chemistry of metal-carbon double bonds (1). At about this same time the olefin metathesis reaction was discovered (2), but It was not until about five years later that Chauvln proposed (3) that the catalyst contained an alkylidene ligand and that the mechanism consisted of the random reversible formation of all possible metallacyclobutane rings. Yet low oxidation state Fischer-type carbene complexes were found not to be catalysts for the metathesis of simple olefins. It is now... [Pg.354]

TTF salts containing similar ferrocenium anions have been prepared through metathesis reactions between (TTF)3(BF4)2 and the tetraphenylphosphonium salts of the desired anions [71]. The crystal structure of (TTF)(CpFeCp-CONHCH2 S03)-1/3H20 contains isolated TTF dimers. Hydrogen bonds of the —NH—OS- and NH—0=C- type are present between anions. Two phases of the TTF salts with the... [Pg.18]

In scrutinizing the various proposed reaction sequences in Eq. (26), one may classify the behavior of carbene complexes toward olefins according to four intimately related considerations (a) relative reactivities of various types of olefins (b) the polar nature of the metal-carbene bond (c) the option of prior coordination of olefin to the transition metal, or direct interaction with the carbene carbon and (d) steric factors, including effects arising from ligands on the transition metal as well as substituents on the olefinic and carbene carbons. Information related to these various influences is by no means exhaustive at this point. Consequently, some apparent contradictions exist which seem to cast doubt on the relevance of various model compound studies to conventional catalysis of the metathesis reaction, a process which unfortunately involves species which elude direct structural determination. [Pg.461]

Several fundamental types of metathesis reactions for monoolefins or diolefins are shown in Eqs. 2-5. [Pg.11]

In virtually all other W(CHR)(NAr)(OR )2 complexes only the syn alkylidene ro-tamer is observed readily [63]. It was not clear at the time why rotamers could be observed in this particular case and why they interconverted readily. Later it was shown that the reactivities of certain syn and anti species could differ by many orders of magnitude and that the rates of their interconversion also could differ by many orders of magnitude as OR was changed from O-t-Bu to OC-Me(CF3)2. Therefore in any system of this general type two different alkylidene rotamers could be accessible (although both may not be observable), either by rotation about the M=C bond, or as a consequence of the metathesis reaction itself. The presence of syn and anti rotamers further complicates the metathesis reaction at a molecular level, and at least in ROMP reactions (see below) in important ways. The apparent ease of interconversion of syn and anti rotamers in phenoxide complexes could be an important feature of systems in which access to both syn and anti rotamers must be assured (see later). [Pg.19]

Molybdenum dinitrosyl complexes with the general formula Mo(NO)2(CHR) (0R )2(A1C12)2 have been found to be active in a variety of metathesis reactions [110]. New alkylidenes could be identified. Variations such as Mo(NO)2(CHMe) (RC02)2 also are known [111]. Complexes of this type are believed to be more reduced than typical d° species discussed here, although they appear to be much more active as metathesis catalysts than typical Fischer-type carbene complexes. [Pg.24]

The exact nature of the alkylidenes formed on various oxide surfaces is still uncertain, as is the nature of the alkylidenes responsible for the often observed metathesis activity. Mo(N)(CH2CMe3)3 also has been employed as a precursor to a surface-bound species believed to be of the type Mo(NH)(CHCMe3)(CH2CMe3) (Osurf) [115]. Although the alkylidene carbon atom could not be observed in solid state NMR spectra, which is typical of surface supported alkylidenes, reaction with acetone to give 2,4,4-trimethylpent-2-ene quantitatively confirmed the presence of the reactive neopentylidene complex. Such species would initiate various metathesis reactions when prepared on partially dehydroxylated silica. [Pg.25]


See other pages where Metathesis reaction type is mentioned: [Pg.99]    [Pg.173]    [Pg.99]    [Pg.173]    [Pg.144]    [Pg.481]    [Pg.26]    [Pg.582]    [Pg.160]    [Pg.418]    [Pg.272]    [Pg.358]    [Pg.432]    [Pg.18]    [Pg.205]    [Pg.207]    [Pg.80]    [Pg.1225]    [Pg.577]    [Pg.1045]    [Pg.1064]    [Pg.228]    [Pg.156]    [Pg.417]    [Pg.123]    [Pg.16]    [Pg.255]    [Pg.8]    [Pg.11]    [Pg.14]    [Pg.23]    [Pg.24]   
See also in sourсe #XX -- [ Pg.17 , Pg.18 ]




SEARCH



Metathesis reactions

Metathesis reactions reaction

Types of metathesis reactions

© 2024 chempedia.info