Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metallic solids properties

Iodine is a bluish-black, lustrous solid, volatizing at ordinary temperatures into a blue-violet gas with an irritating odor it forms compounds with many elements, but is less active than the other halogens, which displace it from iodides. Iodine exhibits some metallic-like properties. It dissolves readily in chloroform, carbon tetrachloride, or carbon disulfide to form beautiful purple solutions. It is only slightly soluble in water. [Pg.122]

Touloukian, Y.S., and DeWitt, D.P. (1972), Thermal Radiative Properties of Non-metallic Solids, in Thermophysical Properties of Matter, Plenum, New York, pp. 3a-48a. [Pg.113]

The things that we have been talking about so far - metal crystals, amorphous metals, solid solutions, and solid compounds - are all phases. A phase is a region of material that has uniform physical and chemical properties. Water is a phase - any one drop of water is the same as the next. Ice is another phase - one splinter of ice is the same as any other. But the mixture of ice and water in your glass at dinner is not a single phase because its properties vary as you move from water to ice. Ice + water is a two-phase mixture. [Pg.18]

Alpha carbon atoms, 348 Alpha decay, 417, 443 Alpha particle, 417 scattering, 245 Aluminum boiling point, 365 compounds, 102 heat of vaporization, 365 hydration energy, 368 hydroxide, 371 ionization energies, 269, 374 metallic solid, 365 occurrence, 373 properties, 101 preparation, 238. 373 reducing agent, 367 Alums, 403 Americium... [Pg.455]

We start by considering a schematic representation of a porous metal film deposited on a solid electrolyte, e.g., on Y203-stabilized-Zr02 (Fig. 5.17). The catalyst surface is divided in two distinct parts One part, with a surface area AE is in contact with the electrolyte. The other with a surface area Aq is not in contact with the electrolyte. It constitutes the gas-exposed, i.e., catalytically active film surface area. Catalytic reactions take place on this surface only. In the subsequent discussion we will use the subscripts E (for electrolyte) and G (for gas), respectively, to denote these two distinct parts of the catalyst film surface. Regions E and G are separated by the three-phase-boundaries (tpb) where electrocatalytic reactions take place. Since, as previously discussed, electrocatalytic reactions can also take place to, usually,a minor extent on region E, one may consider the tpb to be part of region E as well. It will become apparent below that the essence of NEMCA is the following One uses electrochemistry (i.e. a slow electrocatalytic reaction) to alter the electronic properties of the metal-solid electrolyte interface E. [Pg.206]

It is thus clear from the previous discussion that the absolute electrode potential is not a property of the electrode material (as it does not depend on electrode material) but is a property of the solid electrolyte and of the gas composition. To the extent that equilibrium is established at the metal-solid electrolyte interface the Fermi levels in the two materials are equal (Fig. 7.10) and thus eU 2 (abs) also expresses the energy of transfering an electron from the Fermi level of the YSZ solid electrolyte, in equilibrium with po2=l atm, to a point outside the electrolyte surface. It thus also expresses the energy of solvation of an electron from vacuum to the Fermi level of the solid electrolyte. [Pg.355]

Distinguish metallic solids, ionic solids, network solids, and molecular solids by their structures and by their properties (Sections 5.8-5.11 and 5.14). [Pg.327]

The use of quantum mechanical calculations of solid properties was initially the province of solid-state physics, and the calculation of electron energy levels in metals and semiconductors is well established. Chemical quantum mechanical... [Pg.76]

Metallic solids have metal atoms occupying the crystal lattice held together by metallic bonding. In metallic bonding, the electrons of the atoms are delocalized and free to move throughout the entire solid. This explains the electrical and thermal conductivity as well as many of the other properties of metals. [Pg.163]

Not all elements in these groups have the same properties and characteristics. For instance, in group 15, nitrogen is a gas, whereas the element just below it in group 15 is phosphorous, anon-metallic solid (semimetal). Just below phosphorous is arsenic (semimetal), followed by antimony and then bismuth, which are more metal-like. These last two, antimony and bismuth, are metals that might be considered an extension of periods 5 and 6 of the transition elements. [Pg.173]

Figure 6.6 summarizes different blocks, families, and areas of the periodic table. Most elements can be classified as metals. Metals are solid at room temperature, are good conductors of heat and electricity, and form positive ions. Moving across the table from left to right elements lose their metallic characteristics. The metalloids, also known as the semi-metals, have properties intermediate between metals and nonmetals. Because they display characteristics of both conductors and nonconductors, elements such as silicon and germanium find wide use in the semi-conductor industry. Non-metals are found on the far right of the periodic table. Nonmetals are poor conductors and are gases at room temperature. [Pg.67]

Metallic Solid type of solid characterized by delocalized electrons and metal atoms occupying lattice points Metalloid elements have properties intermediate between metals and nonmetals Mixture combination of two or more substances where the individual substances maintain their identity Moderator a material such as graphite or deuterium used to slow down neutrons in nuclear reactors... [Pg.344]

Thermal Properties of Metallic Solids. In the preceding sections, we saw that thermal conductivities of gases, and to some extent liquids, could be related to viscosity and heat capacity. For a solid material such as an elemental metal, the link between thermal conductivity and viscosity loses its validity, since we do not normally think in terms of solid viscosities. The connection with heat capacity is still there, however. In fact, a theoretical description of thermal conductivity in solids is derived directly from the kinetic gas theory used to develop expressions in Section 4.2.1.2. [Pg.319]

Some physical properties of water are shown in Table 7.2. Water has higher melting and boiling temperatures, surface tension, dielectric constant, heat capacity, thermal conductivity and heats of phase transition than similar molecules (Table 7.3). Water has a lower density than would be expected from comparison with the above molecules and has the unusual property of expansion on solidification. The thermal conductivity of ice is approximately four times greater than that of water at the same temperature and is high compared with other non-metallic solids. Likewise, the thermal dif-fusivity of ice is about nine times greater than that of water. [Pg.213]

Metallic solids, such as silver or iron, also consist of large arrays of atoms, but their crystals have metallic properties such as electrical conductivity. We ll discuss metals in Chapter 21. [Pg.401]

Consider now a metallic assembly of n Be atoms, using for the meanwhile only the 2s orbitals. As for Li(s), we obtain a band of n MOs but we now have In electrons, so that the band should be filled. Not only should this crystal have no metallic properties but it should also have zero cohesive energy since the occupancy of antibonding MOs should cancel out the effect of the occupied bonding MOs. But Be(s) does crystallise as a metallic solid, whose enthalpy of atomisation is twice as great as that of... [Pg.259]

The nature of the bonds between the structural units of crystalline solids impart other physical properties to these solids. Metals are good conductors of electricity because metallic bonds allow a free flow of electrons. Covalent network, molecular, and ionic solids do not conduct electricity because their bonds do not provide for mobile electrons. Remember, however, that ionic solids in a water solution have free electrons and are good conductors of electricity. Metallic solids are malleable and ductile covalent network solids are brittle and hard. These differences in physical properties are caused by the chemical bonds between the units It is all in the bonds ... [Pg.186]

After 14 years on the faculty of Imperial College, Jacobs moved from London, England, to London, Ontario, where his research program focused on the optical and electrical properties of ionic crystals, as well as on the experimental and theoretical determination of thermodynamic and kinetic properties of crystal defects.213 Over the years his research interests have expanded to include several aspects of computer simulations of condensed matter.214 He has developed algorithms215 for molecular dynamics studies of non-ionic and ionic systems, and he has carried out simulations on systems as diverse as metals, solid ionic conductors, and ceramics. The simulation of the effects of radiation damage is a special interest. His recent interests include the study of perfect and imperfect crystals by means of quantum chemical methods. The corrosion of metals is being studied by both quantum chemical and molecular dynamics techniques. [Pg.265]

It is evident that the activation of molecular hydrogen does not require the existence of a solid metal with properties associated with a group of metallic atoms. It seems probable that the present information on molecularly dispersed catalysts will apply to atoms or ions, present on the surface of metals or metal oxides or sulfides, which singly or in small numbers constitute active sites. Of course the atom on the surface must be affected by the bulk solid, which is part of its environment. [Pg.202]

Metallic solids possess special properties that set them apart from other classes of sol-... [Pg.73]

Theory that accounts for the bonding and properties of metallic solids. [Pg.7]

In all of these compounds, even the tetrahedral ones, a possible starting point for the calculation of properties is an ionic electronic structure with the effects of interatomic matrix elements treated in perturbation theory. As wc liave indiettted, and as will be seen in detail in the next section, it is even possible to treat tlic polar covalent nontransition-metal solids in this way. Thus we should be able to calculate properties of the transition-metal compounds just as we did for the simple ionic compounds. [Pg.454]


See other pages where Metallic solids properties is mentioned: [Pg.201]    [Pg.122]    [Pg.227]    [Pg.461]    [Pg.465]    [Pg.142]    [Pg.271]    [Pg.65]    [Pg.251]    [Pg.19]    [Pg.98]    [Pg.239]    [Pg.52]    [Pg.487]    [Pg.34]    [Pg.222]    [Pg.362]    [Pg.127]    [Pg.161]    [Pg.47]    [Pg.71]    [Pg.66]    [Pg.189]    [Pg.183]    [Pg.12]    [Pg.355]   
See also in sourсe #XX -- [ Pg.447 , Pg.448 ]




SEARCH



Metallic solids

Solids properties

© 2024 chempedia.info