Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metallic element structures

The FCC structure is illustrated in figure Al.3.2. Metallic elements such as calcium, nickel, and copper fonu in the FCC structure, as well as some of the inert gases. The conventional unit cell of the FCC structure is cubic with the lengdi of the edge given by the lattice parameter, a. There are four atoms in the conventional cell. In the primitive unit cell, there is only one atom. This atom coincides with the lattice pomts. The lattice vectors for the primitive cell are given by... [Pg.98]

The melting and boiling points of the aluminium halides, in contrast to the boron compounds, are irregular. It might reasonably be expected that aluminium, being a more metallic element than boron, would form an ionic fluoride and indeed the fact that it remains solid until 1564 K. when it sublimes, would tend to confirm this, although it should not be concluded that the fluoride is, therefore, wholly ionic. The crystal structure is such that each aluminium has a coordination number of six, being surrounded by six fluoride ions. [Pg.153]

Arsenic dissolves in concentrated nitric acid forming arsenicfV) acid, H3ASO4, but in dilute nitric acid and concentrated sulphuric acid the main product is the arsenic(III) acid, HjAsOj. The more metallic element, antimony, dissolves to form the (III) oxide Sb O, with moderately concentrated nitric acid, but the (V) oxide Sb205 (structure unknown) with the more concentrated acid. Bismuth, however, forms the salt bismulh(lll) nitrate Bi(N03)3. 5H,0. [Pg.212]

Boron is unique among the elements in the structural complexity of its allotropic modifications this reflects the variety of ways in which boron seeks to solve the problem of having fewer electrons than atomic orbitals available for bonding. Elements in this situation usually adopt metallic bonding, but the small size and high ionization energies of B (p. 222) result in covalent rather than metallic bonding. The structural unit which dominates the various allotropes of B is the B 2 icosahedron (Fig. 6.1), and this also occurs in several metal boride structures and in certain boron hydride derivatives. Because of the fivefold rotation symmetry at the individual B atoms, the B)2 icosahedra pack rather inefficiently and there... [Pg.141]

Attempts to classify carbides according to structure or bond type meet the same difficulties as were encountered with hydrides (p. 64) and borides (p. 145) and for the same reasons. The general trends in properties of the three groups of compounds are, however, broadly similar, being most polar (ionic) for the electropositive metals, most covalent (molecular) for the electronegative non-metals and somewhat complex (interstitial) for the elements in the centre of the d block. There are also several elements with poorly characterized, unstable, or non-existent carbides, namely the later transition elements (Groups 11 and 12), the platinum metals, and the post transition-metal elements in Group 13. [Pg.297]

Many of the most important naturally occurring minerals and ores of the metallic elements are sulfides (p. 648), and the recovery of metals from these ores is of major importance. Other metal sulfides, though they do not occur in nature, can be synthesized by a variety of preparative methods, and many have important physical or chemical properties which have led to their industrial production. Again, the solubility relations of metal sulfides in aqueous solution form the basis of the most widely used scheme of elementary qualitative analysis. These various more general considerations will be briefly discussed before the systematic structural chemistry of metal sulfides is summarized. [Pg.676]

The elements are all lustrous, silvery metals with high mps and they have typically metallic hep structures which transform to bcc at high temperatures (882°, 870° and 1760°C for Ti, Zr and Hf). They are better conductors of... [Pg.956]

The elements all have typically metallic bcc structures and in the massive state are lustrous, silvery, and (when pure) fairly soft. However, the most obvious characteristic at least of... [Pg.1004]

Figure 1. Formation of ternary borides MreMj3B2 and different structure types (Mre = rare-earth element, M-p = transition-metal element). , CeCo3B2 type ErIr3B2 type O, URujBj type El, Ndo7,Rh3 29B2 type IS, YOS3B2 type B, Laofi3Rh3B2 type , compound formation observed, but structure type unknown. Refs a , b , c , d e , f g , h , i , j ", k , 1 , m , r, s - , t u = 45 see also ref. 62. Figure 1. Formation of ternary borides MreMj3B2 and different structure types (Mre = rare-earth element, M-p = transition-metal element). , CeCo3B2 type ErIr3B2 type O, URujBj type El, Ndo7,Rh3 29B2 type IS, YOS3B2 type B, Laofi3Rh3B2 type , compound formation observed, but structure type unknown. Refs a , b , c , d e , f g , h , i , j ", k , 1 , m , r, s - , t u = 45 see also ref. 62.
The most important undesired metallic impurities are nickel and vanadium, present in porphyrinic structures that originate from plants and are predominantly found in the heavy residues. In addition, iron may be present due to corrosion in storage tanks. These metals deposit on catalysts and give rise to enhanced carbon deposition (nickel in particular). Vanadium has a deleterious effect on the lattice structure of zeolites used in fluid catalytic cracking. A host of other elements may also be present. Hydrodemetallization is strictly speaking not a catalytic process, because the metallic elements remain in the form of sulfides on the catalyst. Decomposition of the porphyrinic structures is a relatively rapid reaction and as a result it occurs mainly in the front end of the catalyst bed, and at the outside of the catalyst particles. [Pg.355]

Solid solutions are very common among structurally related compounds. Just as metallic elements of similar structure and atomic properties form alloys, certain chemical compounds can be combined to produce derivative solid solutions, which may permit realization of properties not found in either of the precursors. The combinations of binary compounds with common anion or common cation element, such as the isovalent alloys of IV-VI, III-V, II-VI, or I-VII members, are of considerable scientific and technological interest as their solid-state properties (e.g., electric and optical such as type of conductivity, current carrier density, band gap) modulate regularly over a wide range through variations in composition. A general descriptive scheme for such alloys is as follows [41]. [Pg.22]

The elements Zr and Hf are generally more similar in their chemistry than any other pair of congeneric elements as having nearly identical atomic or ionic radii, electronegativities, and elemental structures (actually, the similarities of Nb and Ta are nearly as close) however, their metal-rich chemistry is often surprising in its structural and physical aspects with fairly sharp distinctions emerging between the two elements [71]. [Pg.33]

Table 14.2 The element structures of the metals at ambient conditions h = hexagonal closest-packing c = cubic closest-packing... Table 14.2 The element structures of the metals at ambient conditions h = hexagonal closest-packing c = cubic closest-packing...

See other pages where Metallic element structures is mentioned: [Pg.633]    [Pg.643]    [Pg.66]    [Pg.121]    [Pg.633]    [Pg.643]    [Pg.66]    [Pg.121]    [Pg.256]    [Pg.47]    [Pg.56]    [Pg.978]    [Pg.653]    [Pg.330]    [Pg.376]    [Pg.129]    [Pg.197]    [Pg.632]    [Pg.88]    [Pg.8]    [Pg.29]    [Pg.240]    [Pg.30]    [Pg.37]    [Pg.50]    [Pg.322]    [Pg.59]    [Pg.134]    [Pg.2]    [Pg.120]    [Pg.15]    [Pg.237]    [Pg.259]    [Pg.278]    [Pg.217]    [Pg.217]   


SEARCH



Elemental metallic

Elements metals

Elements, metallic

Metal element structure

Metallic elements metals

Metallic elements structures, table

Metallic elements, solid state structures

Metals elemental

Structure element

Structures of metallic elements

© 2024 chempedia.info