Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal-oxygen radicals

Eadicals having special names are listed in Table 3 (p. 24). Thio-, seleno-, etc., prefixes may be used with these, as with acids. The -yl principle is noted in the i es as not extensible to other metal-oxygen radicals. In some cases use of Stock numbers or the Ewens-Bassett system extends the range of utility of these special radical names, e.g., FO + uranyl(vi) or uranyl(2 + ), UO uranyl(v) or uranyl(H-). [Pg.23]

As strong metal ion chelators due to their catechol structure, tea flavonoids are able to bind and thus decrease the level of free cellular ferric and ferrous ions, which are required for the generation of reactive oxygen radicals via the Fenton reaction (Yang and Wang, 1993). [Pg.138]

Halliwell, B. and Gutteridge, J.M.C. (1984). Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219, 1-14. [Pg.95]

Although atherosclerosis and rheumatoid arthritis (RA) are distinct disease states, both disorders are chronic inflammatory conditions and may have common mechanisms of disease perpetuation. At sites of inflammation, such as the arterial intima undergoing atherogen-esis or the rheumatoid joint, oxygen radicals, in the presence of transition-metal ions, may initiate the peroxidation of low-density lipoprotein (LDL) to produce oxidatively modified LDL (ox-LDL). Ox-LDL has several pro-inflammatory properties and may contribute to the formation of arterial lesions (Steinberg et /., 1989). Increased levels of lipid peroxidation products have been detected in inflammatory synovial fluid (Rowley et /., 1984 Winyard et al., 1987a Merry et al., 1991 Selley et al., 1992 detailed below), but the potential pro-inflammatory role of ox-LDL in the rheumatoid joint has not been considered. We hypothesize that the oxidation of LDL within the inflamed rheumatoid joint plays a pro-inflammatory role just as ox-LDL has the identical capacity within the arterial intima in atherosclerosis. [Pg.98]

Exposure of protein amino groups to MDA (formed by the degradation of lipid peroxides) or to oxygen radicals directly, generated by transition metals and hydrogen peroxide, induce fluorescence indistinguishable from that attributed to Amadori-adduct formation (Chio and Tappel, 1969), and leads to the formation of cross-links (Lunec a al., 1985). [Pg.190]

Oxidized LDL are considered to be one of the major factors associated with the development of atherosclerosis. The earliest event is the transport of LDL into the arterial wall where LDL, being trapped in subendothelial space, are oxidized by oxygen radicals produced by endothelial and arterial smooth muscle cells. The oxidation of LDL in the arterial wall is affected by various factors including hemodynamic forces such as shear stress and stretch force. Thus, it has been shown [177] that stress force imposed on vascular smooth muscle cells incubated with native LDL increased the MDA formation by about 150% concomitantly with the enhancement of superoxide production. It was suggested that oxidation was initiated by NADPH oxidase-produced superoxide and depended on the presence of metal ions. [Pg.798]

Thus, the mechanism of MT antioxidant activity might be connected with the possible antioxidant effect of zinc. Zinc is a nontransition metal and therefore, its participation in redox processes is not really expected. The simplest mechanism of zinc antioxidant activity is the competition with transition metal ions capable of initiating free radical-mediated processes. For example, it has recently been shown [342] that zinc inhibited copper- and iron-initiated liposomal peroxidation but had no effect on peroxidative processes initiated by free radicals and peroxynitrite. These findings contradict the earlier results obtained by Coassin et al. [343] who found no inhibitory effects of zinc on microsomal lipid peroxidation in contrast to the inhibitory effects of manganese and cobalt. Yeomans et al. [344] showed that the zinc-histidine complex is able to inhibit copper-induced LDL oxidation, but the antioxidant effect of this complex obviously depended on histidine and not zinc because zinc sulfate was ineffective. We proposed another mode of possible antioxidant effect of zinc [345], It has been found that Zn and Mg aspartates inhibited oxygen radical production by xanthine oxidase, NADPH oxidase, and human blood leukocytes. The antioxidant effect of these salts supposedly was a consequence of the acceleration of spontaneous superoxide dismutation due to increasing medium acidity. [Pg.891]

It has been proposed [92] that oxygen radicals may be formed in the stage of glycoxidation during the transition metal oxidation of protein enediol. [Pg.922]

In this study, the metal centred radicals were formed indirectly by the photolysis of (Me3CO)2 yielding Me3CO radicals which then abstracted a hydrogen atom from the (n-Bu)3MH (M = Ge or Sn). The resulting metal based radical reacts with the carbonyl compound by adding to the oxygen atom (reaction 3). [Pg.725]

A recent study (1) has demonstrated that the electrochemical oxidation of hydroxide ion yields hydroxyl radical ( OH) and its anion (O"-). These species in turn are stabilized at glassy carbon electrodes by transition-metal ions via the formation of metal-oxygen covalent bonds (unpaired d electron with unpaired p electron of -OH and O- ). The coinage metals (Cu, Ag, and Au), which are used as oxygen activation catalysts for several industrial processes (e.g., Ag/02 for production of ethylene oxide) (2-10), have an unpaired electron (d10s1 or d9s2 valence-... [Pg.466]

Cyclizations of dihydroxystilbene 256 using 4 mol % of chiral ruthenium complexes under photolytic conditions were investigated by Katsuki et al. (Scheme 65) [167]. Coordination of alcohols/phenols to Ru(IV) species generates a cation radical with concomitant reduction of metal to Ru(III). Cycli-zation of this oxygen radical followed by another cyclization provides the product 257. Catalyst 259 provided 81% ee of the product in chlorobenzene solvent. Optimization of the solvent polarity led to a mixture of toluene and f-butanol in 2 3 ratio as the ideal solvent. Substituents on the phenyl rings led to a decrease in selectivity. Low yields were due to the by-product 258. [Pg.169]

The superoxide anion radical and hydrogen peroxide are not particularly harmful to cells. It is the product of hydrogen peroxide decomposition, the hydroxyl radical (HO ), that is responsible for most of the cytotoxicity of oxygen radicals. The reaction can he catalyzed hy several transition metals, including copper, manganese, cohalt, and iron, of which iron is the most ahimdant in the human body (Reaction 2 also called the Fenton reaction). To avoid iron-catalyzed reactions, iron is transported and stored chiefly as Fe(III), although redox active iron can be formed in oxidative reactions, and Fe(III) can be reduced by semiquinone radicals (Reaction 3). [Pg.155]

The oxygen radicals get adsorbed on the catalyst surfaces and either combine to form oxygen or react with metal surfaces. This favors the decomposition reaction of H2O and enhances the hydrogen yield. To date the hydrogen yield and efficiencies are not high enough for practical application. [Pg.90]

It is not necessary to dignify all these metallic compound radicals with names the chief point of importance about them is their abbreviated notation, in which the smell letter o is attaohed to the symbol of the metal, the atomicify of the radical being marked in the usual manner. It mast be borne in mind that the number of atoms of oxygen in any radical of this class depends upon its atomicity thus a monad contains only one atom of oxygen, a dyad two, and a triad always three atoms of oxygen. Ihe use of any but monad and dyad metallic compound radicals is very rare. [Pg.39]

Although hydroxyl radical is commonly assumed to be the most toxic of the oxygen radicals (with little direct evidence), other direct reactions are more likely to be important for understanding the cytotoxicity of peroxynitrite. A second oxidative pathway involves the heterolytic cleavage of peroxynitrite to form a nitronium-like species (N02 ), which is catalyzed hy transition metals (Beckman et al., 1992). Low molecular weight metal complexes as well as metals bound in superoxide dismutase and other proteins catalyze the nitration of a wide range of phenolics, including tyrosine residues in most proteins (Beckman et al., 1992). [Pg.52]


See other pages where Metal-oxygen radicals is mentioned: [Pg.3]    [Pg.68]    [Pg.63]    [Pg.99]    [Pg.18]    [Pg.42]    [Pg.75]    [Pg.76]    [Pg.700]    [Pg.793]    [Pg.825]    [Pg.840]    [Pg.844]    [Pg.868]    [Pg.937]    [Pg.568]    [Pg.19]    [Pg.152]    [Pg.347]    [Pg.152]    [Pg.160]    [Pg.244]    [Pg.92]    [Pg.329]    [Pg.535]    [Pg.145]    [Pg.73]    [Pg.82]    [Pg.42]    [Pg.794]    [Pg.826]    [Pg.841]    [Pg.845]   
See also in sourсe #XX -- [ Pg.24 ]




SEARCH



Metal oxygen

Metal radicals

Metallic radicals

© 2024 chempedia.info