Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal oxides polymerization catalysts

The reactivity of the propagation centers in oxide polymerization catalysts depended on the nature of the transition metal, support, activation temperature of the catalyst, and type of reducing agent (168a). [Pg.198]

Supported Rhodium Catalysts Alkali Promoters on Metal Surfaces Cobalt-Molybdenum Sulfide Hydrodesulfurization Catalysts Chromium Oxide Polymerization Catalysts... [Pg.246]

Examples of synergistic effects are now very numerous in catalysis. We shall restrict ourselves to metallic oxide-type catalysts for selective (amm)oxidation and oxidative dehydrogenation of hydrocarbons, and to supported metals, in the case of the three-way catalysts for abatement of automotive pollutants. A complementary example can be found with Ziegler-Natta polymerization of ethylene on transition metal chlorides [1]. To our opinion, an actual synergistic effect can be claimed only when the following conditions are filled (i), when the catalytic system is, thermodynamically speaking, biphasic (or multiphasic), (ii), when the catalytic properties are drastically enhanced for a particular composition, while they are (comparatively) poor for each single component. Therefore, neither promotors in solid solution in the main phase nor solid solutions themselves are directly concerned. Multicomponent catalysts, as the well known multimetallic molybdates used in ammoxidation of propene to acrylonitrile [2, 3], and supported oxide-type catalysts [4-10], provide the most numerous cases to be considered. Supported monolayer catalysts now widely used in selective oxidation can be considered as the limit of a two-phase system. [Pg.177]

Uses. Magnesium alkyls are used as polymerization catalysts for alpha-alkenes and dienes, such as the polymerization of ethylene (qv), and in combination with aluminum alkyls and the transition-metal haUdes (16—18). Magnesium alkyls have been used in conjunction with other compounds in the polymerization of alkene oxides, alkene sulfides, acrylonitrile (qv), and polar vinyl monomers (19—22). Magnesium alkyls can be used as a Hquid detergents (23). Also, magnesium alkyls have been used as fuel additives and for the suppression of soot in combustion of residual furnace oil (24). [Pg.340]

Chemical Properties. Higher a-olefins are exceedingly reactive because their double bond provides the reactive site for catalytic activation as well as numerous radical and ionic reactions. These olefins also participate in additional reactions, such as oxidations, hydrogenation, double-bond isomerization, complex formation with transition-metal derivatives, polymerization, and copolymerization with other olefins in the presence of Ziegler-Natta, metallocene, and cationic catalysts. All olefins readily form peroxides by exposure to air. [Pg.426]

Other THF polymerization processes that have been disclosed in papers and patents, but which do not appear to be in commercial use in the 1990s, include catalysis by boron trifluoride complexes in combination with other cocatalysts (241—245), modified montmorrillonite clay (246—248) or modified metal oxide composites (249), rare-earth catalysts (250), triflate salts (164), and sulfuric acid or Aiming sulfuric acid with cocatalysts (237,251—255). [Pg.365]

An extremely wide variety of catalysts, Lewis acids, Brmnsted acids, metal oxides, molecular sieves, dispersed sodium and potassium, and light, are effective (Table 5). Generally, acidic catalysts are required for skeletal isomerization and reaction is accompanied by polymerization, cracking, and hydrogen transfer, typical of carbenium ion iatermediates. Double-bond shift is accompHshed with high selectivity by the basic and metallic catalysts. [Pg.365]

Polymerization of olefins such as styrene is promoted by acid or base or sodium catalysts, and polyethylene is made with homogeneous peroxides. Condensation polymerization is catalyzed by acid-type catalysts such as metal oxides and sulfonic acids. Addition polymerization is used mainly for olefins, diolefins, and some carbonyl compounds. For these processes, initiators are coordination compounds such as Ziegler-type catalysts, of which halides of transition metals Ti, V, Mo, and W are important examples. [Pg.2095]

Acid catalysts, such as metal oxides and sulfonic acids, generally catalyze condensation polymerizations. However, some condensation polymers form under alkaline conditions. For example, the reaction of formaldehyde with phenol under alkaline conditions produces methy-lolphenols, which further condense to a thermosetting polymer. [Pg.314]

It is necessary to note the limitation of the approach to the study of the polymerization mechanism, based on a formal comparison of the catalytic activity with the average oxidation degree of transition metal ions in the catalyst. The change of the activity induced by some factor (the catalyst composition, the method of catalyst treatment, etc.) was often assumed to be determined only by the change of the number of active centers. Meanwhile, the activity (A) of the heterogeneous polymerization catalyst depends not only on the surface concentration of the propagation centers (N), but also on the specific activity of one center (propagation rate constant, Kp) and on the effective catalyst surface (Sen) as well ... [Pg.176]

As a final example of the application of gas-liquid-particle operation to a process involving a gaseous reactant and a solid catalyst, the possibility of polymerizing ethylene in, for example, a slurry operation employing a metal or metal oxide catalyst can be cited. It has been suggested that the good control of reaction conditions obtained in a slurry-type operation may be of importance in the production of certain types of polyethylene (Rl). [Pg.78]

From the preceding discussion, it is easily understood that direct polyesterifications between dicarboxylic acids and aliphatic diols (Scheme 2.8, R3 = H) and polymerizations involving aliphatic or aromatic esters, acids, and alcohols (Scheme 2.8, R3 = alkyl group, and Scheme 2.9, R3 = H) are rather slow at room temperature. These reactions must be carried out in the melt at high temperature in the presence of catalysts, usually metal salts, metal oxides, or metal alkoxides. Vacuum is generally applied during the last steps of the reaction in order to eliminate the last traces of reaction by-product (water or low-molar-mass alcohol, diol, or carboxylic acid such as acetic acid) and to shift the reaction toward the... [Pg.61]

Recently, a deeper understanding of the precise nature of metal-carbon bonding was achieved, enabling specific polymerization catalyst systems to be designed on a practical level. The metal-carbon bond of early transition metals is partially ionic, while that of late transition metal is generally covalent. The degree of ionicity is delicately dependent on the identity of metal, formal oxidation states and auxiliary ligands. [Pg.3]

The Cu-complex-catalyzed oxidative polymerization of phenol derivatives has been selected here as a model reaction in which a polymer-metal complex acts as a catalyst. The catalytic cycle is illustrated in Scheme 3, the example used being the oxidative... [Pg.148]

In 1971, LDHs containing different metal cations (such as Mg, Zn, Ni, Cr, Co, Mn and Al) with carbonate as interlayer anions, calcined at 473-723 K and partially or completely chlorinated, were reported to be effective as supports for Ziegler catalysts in the polymerization of olefins [8], with the maximum catalytic activity of polyethylene production observed for Mg/Mn/Al - CO3 LDH calcined at 473 K. Even earher, calcined Mg/Al LDHs were used to support Ce02 for SO removal from the emissions from fluidized catalytic cracking units (FCCU) [9,10]. Some transition metal oxides have also been... [Pg.195]


See other pages where Metal oxides polymerization catalysts is mentioned: [Pg.156]    [Pg.105]    [Pg.1223]    [Pg.71]    [Pg.165]    [Pg.438]    [Pg.383]    [Pg.294]    [Pg.173]    [Pg.334]    [Pg.465]    [Pg.706]    [Pg.212]    [Pg.151]    [Pg.431]    [Pg.44]    [Pg.274]    [Pg.159]    [Pg.119]    [Pg.87]    [Pg.166]    [Pg.114]    [Pg.11]    [Pg.233]    [Pg.144]    [Pg.185]    [Pg.204]    [Pg.461]    [Pg.480]    [Pg.483]    [Pg.48]    [Pg.136]    [Pg.182]   
See also in sourсe #XX -- [ Pg.2 , Pg.3 , Pg.3 , Pg.3 , Pg.4 , Pg.5 , Pg.5 , Pg.14 , Pg.14 ]




SEARCH



Catalysts metal oxidation

Catalysts polymerizing

Metal oxide catalysts

Metal oxides, catalysts oxidation

Metal polymerization

© 2024 chempedia.info