Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal oxides binary zinc oxide

The electronic interaction between the catalyst components is best exemplified by its color and optical spectra. For example, the very active binary catalyst Cu/ZnO = 30/70 has a pitch black color and although it is composed of crystallographically identifiable copper and zinc oxide, its optical spectrum is not a superposition of the spectrum of copper metal and zinc oxide, but rather comprises a very intense continuous absorption band in the visible part of the spectrum that contains no trace of the characteristic... [Pg.259]

Area of Copper Metal and Zinc Oxide in the Binary Cu/ZnO Catalysis ... [Pg.268]

Quantitative and qualitative changes in chemisorption of the reactants in methanol synthesis occur as a consequence of the chemical and physical interactions of the components of the copper-zinc oxide binary catalysts. Parris and Klier (43) have found that irreversible chemisorption of carbon monoxide is induced in the copper-zinc oxide catalysts, while pure copper chemisorbs CO only reversibly and pure zinc oxide does not chemisorb this gas at all at ambient temperature. The CO chemisorption isotherms are shown in Fig. 12, and the variations of total CO adsorption at saturation and its irreversible portion with the Cu/ZnO ratio are displayed in Fig. 13. The irreversible portion was defined as one which could not be removed by 10 min pumping at 10"6 Torr at room temperature. The weakly adsorbed CO, given by the difference between the total and irreversible CO adsorption, correlated linearly with the amount of irreversibly chemisorbed oxygen, as demonstrated in Fig. 14. The most straightforward interpretation of this correlation is that both irreversible oxygen and reversible CO adsorb on the copper metal surface. The stoichiometry is approximately C0 0 = 1 2, a ratio obtained for pure copper, over the whole compositional range of the... [Pg.268]

To summarize the qualitative findings, the methanol synthesis activity in the binary Cu/ZnO catalysts appears to be linked to sites that also irreversibly chemisorb CO and not to sites that adsorb CO reversibly. Since irreversible adsorption of CO follows linearly the concentration of amorphous copper in zinc oxide, these sites are likely to be that part of the copper solute that is present on the zinc oxide surface. No correlation of the catalyst activity and the copper metal surface area, titrated by reversible form of CO or by oxygen, could be found in the binary Cu/ZnO catalysts (43). In contrast with this result, it has been claimed that the synthesis activity is proportional to copper metal area in copper-chromia (47), copper-zinc aluminate (27), and copper-zinc oxide-alumina (46) catalysts. In these latter communications (27,46,47), the amount of amorphous copper has not been determined, and obviously there is much room for further research to confirm one or another set of results and interpretations. However, in view of the lack of activity of pure copper metal quoted earlier, it is unlikely that the synthesis activity is simply proportional to the copper metal surface area in any of the low-temperature methanol-synthesis catalysts. [Pg.274]

Aside from the recently described Cu/Th02 catalysts, copper on chromia and copper on silica have been reported to catalyze methanol synthesis at low temperatures and pressures in various communications that are neither patents nor refereed publications. It is not feasible to critically review statements unsupported by published data or verifiable examples. However, physical and chemical interactions similar to those documented in the copper-zinc oxide catalysts are possible in several copper-metal oxide systems and the active form of copper may be stabilized by oxides of zinc, thorium, chromium, silicon, and many other elements. At the same time it is doubtful that more active and selective binary copper-based catalysts than... [Pg.288]

The next five chapters deal with deposition of specific groups of semiconductors. In Chapter 4, II-VI Semiconductors, all the sulphides, selenides, and (what little there is on) tellurides of cadmium (most of the chapter), zinc (a substantial part), and mercury (a small part). (Oxides are left to a later chapter.) This chapter is, understandably, a large one, due mainly to the large amount of work carried out on CdS and to a lesser extent on CdSe. Chapter 5, PbS and PbSe, provides a separate forum for PbS and PbSe, which provided much of the focus for CD in earlier years. The remaining sulphides and selenides are covered in Chapter 6, Other Sulphides and Selenides. There are many of these compounds, thus, this is a correspondingly large chapter. Chapter 7, Oxides and Other Semiconductors, is devoted mainly to oxides and some hydroxides, as well as to miscellaneous semiconductors that have only been scantily studied (elemental selenium and silver halides). These previous chapters have been limited to binary semiconductors, made up of two elements (with the exception of elemental Se). Chapter 8, Ternary Semiconductors, extends this list to semiconductors composed of three elements, whether two different metals (most of the studies) or two different chalcogens. [Pg.7]

The less electronegative element in a binary compound is always named first. Often this element is a metal. You use the same name as the element. For example, sodium chloride, NaCl, calcium oxide, CaO, and zinc sulfide, ZnS, contain the metals sodium, calcium, and zinc. [Pg.102]

Many ionic componnds are binary compounds, or compounds formed from just two elements. For binary componnds the first element named is the metal cation, followed by the nonmetallic anion. Thus NaCl is sodium chloride. The anion is named by taking the first part of the element name (chlorine) and adding -ide. Potassium bromide (KBr), zinc iodide (Znl2), and aluminum oxide (AI2O3) are also binary componnds. Table 2.2 shows the -ide nomenclature of some common monatomic anions according to their positions in the periodic table. [Pg.54]


See other pages where Metal oxides binary zinc oxide is mentioned: [Pg.195]    [Pg.245]    [Pg.259]    [Pg.292]    [Pg.295]    [Pg.5183]    [Pg.5182]    [Pg.494]    [Pg.51]    [Pg.166]    [Pg.80]    [Pg.375]    [Pg.24]    [Pg.36]    [Pg.39]    [Pg.42]    [Pg.421]    [Pg.383]    [Pg.31]    [Pg.153]    [Pg.112]    [Pg.45]    [Pg.207]    [Pg.991]    [Pg.4946]    [Pg.118]    [Pg.653]    [Pg.230]    [Pg.435]   
See also in sourсe #XX -- [ Pg.77 , Pg.78 , Pg.79 , Pg.80 ]




SEARCH



Binary metal oxides

Binary oxides

Metallic zinc

Metals binary

Zinc metal

© 2024 chempedia.info