Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal hydrogenolysis

In fact, the acid-catalysed ring contraction of alkylcyclohexanes to al-kylcyclopentanes is potentially important as a reaction, because cyclopentanes are more readily ring-opened than alkylcyclohexanes over precious metal hydrogenolysis catalysts to give linear hydrocarbons. Such linear alkanes are suitable for diesel fuel. Addition of an acidic function therefore enables both cyclopentanes and cyclohexanes to be transformed at a similar rate in this way. [Pg.347]

Single-bond cleavage with molecular hydrogen is termed hydrogenolysis. Palladium is the best catalyst for this purpose, platinum is not useful. Desulfurizations are most efficiently per-formed with Raney nickel (with or without hydrogen G.R. Pettit, 1962 A or with alkali metals in liquid ammonia or amines. The scheme below summarizes some classes of compounds most susceptible to hydrogenolysis. [Pg.113]

Catalytic hydrogenation of furan to tetrahydrofuran is accompHshed in either Hquid or vapor phase. Hydrogenation of the double bonds is essentially quantitative over nickel catalysts but is generally accompanied by hydrogenolysis over the noble metals. [Pg.81]

Alkali moderation of supported precious metal catalysts reduces secondary amine formation and generation of ammonia (18). Ammonia in the reaction medium inhibits Rh, but not Ru precious metal catalyst. More secondary amine results from use of more polar protic solvents, CH OH > C2H5OH > Lithium hydroxide is the most effective alkah promoter (19), reducing secondary amine formation and hydrogenolysis. The general order of catalyst procUvity toward secondary amine formation is Pt > Pd Ru > Rh (20). Rhodium s catalyst support contribution to secondary amine formation decreases ia the order carbon > alumina > barium carbonate > barium sulfate > calcium carbonate. [Pg.209]

The catalysts with the simplest compositions are pure metals, and the metals that have the simplest and most uniform surface stmctures are single crystals. Researchers have done many experiments with metal single crystals in ultrahigh vacuum chambers so that unimpeded beams of particles and radiation can be used to probe them. These surface science experiments have led to fundamental understanding of the stmctures of simple adsorbed species, such as CO, H, and small hydrocarbons, and the mechanisms of their reactions (42) they indicate that catalytic activity is often sensitive to small changes in surface stmcture. For example, paraffin hydrogenolysis reactions take place rapidly on steps and kinks of platinum surfaces but only very slowly on flat planes however, hydrogenation of olefins takes place at approximately the same rate on each kind of surface site. [Pg.170]

Progress and prospects in hydrogenation, hydrogenolysis, and desulfurization of thiophenes with soluble metal complexes 98ACR109. [Pg.251]

Another example is the hydrogenation of the homoallylic eompound 4-methyl-3-cyclohexenyl ethyl ether to a mixture of 4-methylcyclohexyl ethyl ether and methylcyclohexane. The extent of hydrogenolysis depends on both the isomerizing and the hydrogenolyzing tendencies of the catalysts. With unsupported metals in ethanol, the percent hydrogenolysis decreased in the order palladium (62.6%), rhodium (23 6%), platinum (7.1%), iridium (3.9%), ruthenium (3.0%) (S3). [Pg.35]

Platinum, palladium, and rhodium will function well under milder conditions and are especially useful when other reducible functions are present. Freifelder (23) considers rhodium-ammonia the system of choice when reducing -amino nitriles and certain )5-cyano ethers, compounds that undergo extensive hydrogenolysis under conditions necessary for base-metal catalysis. [Pg.97]

Anilines have been reduced successfully over a variety of supported and unsupported metals, including palladium, platinum, rhodium, ruthenium, iridium, (54), cobalt, and nickel. Base metals require high temperatures and pressures (7d), whereas noble metals can be used under much milder conditions. Currently, preferred catalysts in both laboratory or industrial practice are rhodium at lower pressures and ruthenium at higher pressures, for both display high activity and relatively little tendency toward either coupling or hydrogenolysis,... [Pg.123]

A variety of mixed metal catalysts, either as fused oxides (42 7 8) or coprecipitated on supports (25 0) or as physical mixtures of separate catalysts (5P), have been tested in aniline reductions. In the hydrogenation of ethyl p-aminobenzoate, a coprccipitated 3% Pd, 2% Rh-on-C proved superior to 5% Rh-on-C, inasmuch as hydrogenolysis to ethyl cyclohexanecarboxylate was less (61) (Table 1). [Pg.124]

These data show hydrogenolysis to increase with temperature, a general observation supported by many experiments. Here the influence of temperature is less with the mixed-metal catalysts. [Pg.124]

In saturation of ethyl p-tolyl ether in ethanol solvent, hydrogenolysis rose with metal in the order Pd < Ru Rh < Ir < Pi ( 7). The various complex factors contributing to this ordering are discussed at length in this reference. [Pg.129]

A quantitative comparison of metals in the hydrogenation of vinyl ethers has been made, The extent of hydrogenolysis in hydrogenation of l-ethoxy-3-methylcyclohexene decreased in the order Pt Os > Rh Ir > Pd > Ru U24e)-, in the case of ethyl 4-methyl-1-cyclohexenyl ether, the order was Pt Ir > Rh > Os Ru Pd (124d). In ethanol, ketal formation is a... [Pg.165]

The dissolving metal reduction is not suitable, because it effects a cleavage ol the benzylic C-N bond. b The cleavage of the N-N bond by hydrogenolysis is affected by some racemization. [Pg.720]

Even if it is assumed that the reaction is ionic, Occam s Razor would lead to the conclusion that the system is too complex and that the effort to keep it ionic is too great. It is difficult to undersand why step 8c is slow and why a simple uncharged complex would not be equally reasonable. We prefer a mechanism in which the carbon monoxide molecule is adsorbed parallel to the surface and in which the oxygen orbitals as well as the carbon orbitals of C=0 bond electrons interact with the metal. It seems reasonable that hydrogenolysis occurs exclusively only because the oxygen is held in some way while the two bonds are broken and it finally desorbs as water. The most attractive picture would be (a) adsorption of CO and H2 with both atoms on the surface... [Pg.18]

The last vertical column of the eighth group of the Periodic Table of the Elements comprises the three metals nickel, palladium, and platinum, which are the catalysts most often used in various reactions of hydrogen, e.g. hydrogenation, hydrogenolysis, and hydroisomerization. The considerations which are of particular relevance to the catalytic activity of these metals are their surface interactions with hydrogen, the various states of its adatoms, and admolecules, eventually further influenced by the coadsorbed other reactant species. [Pg.245]

Cyclopropanes can be cleaved by catalytic hydrogenolysis. Among the catalysts used have been Ni, Pd, and Pt. The reaction can often be run under mild condi-tions." ° Certain cyclopropane rings, especially cyclopropyl ketones and aryl-substituted cyclopropanes," can be reductively cleaved by an alkali metal (generally Na or Li) in liquid anunonia." Similar reduction has been accomplished photo-chemically in the presence of LiC104." ... [Pg.1012]

Reactivity studies of organic ligands with mixed-metal clusters have been utilized in an attempt to shed light on the fundamental steps that occur in heterogeneous catalysis (Table VIII), although the correspondence between cluster chemistry and surface-adsorbate interactions is often poor. While some of these studies have been mentioned in Section ll.D., it is useful to revisit them in the context of the catalytic process for which they are models. Shapley and co-workers have examined the solution chemistry of tungsten-iridium clusters in an effort to understand hydrogenolysis of butane. The reaction of excess diphenylacetylene with... [Pg.106]


See other pages where Metal hydrogenolysis is mentioned: [Pg.569]    [Pg.444]    [Pg.365]    [Pg.115]    [Pg.569]    [Pg.444]    [Pg.365]    [Pg.115]    [Pg.723]    [Pg.366]    [Pg.368]    [Pg.446]    [Pg.477]    [Pg.163]    [Pg.182]    [Pg.200]    [Pg.224]    [Pg.389]    [Pg.638]    [Pg.59]    [Pg.125]    [Pg.160]    [Pg.167]    [Pg.176]    [Pg.684]    [Pg.427]    [Pg.640]    [Pg.1199]    [Pg.109]    [Pg.115]    [Pg.167]    [Pg.168]   
See also in sourсe #XX -- [ Pg.66 , Pg.70 ]




SEARCH



Cyclopentane, hydrogenolysis, metal particle

Effects of Additives and the Strong Metal-Support Interaction on Alkane Hydrogenolysis

Group VIII metals hydrogenolysis activities

Hydrogenolysis by metals

Hydrogenolysis carbon-metal bond

Hydrogenolysis dissolving metals

Hydrogenolysis of late-transition-metal

Hydrogenolysis of late-transition-metal hydroxide and alkoxide complexe

Hydrogenolysis of the Lower Alkanes on Single Metal Catalysts Rates, Kinetics, and Mechanisms

Hydrogenolysis on metals

Hydrogenolysis over Metal Sulfide Catalysts

Metal insertion hydrogenolysis

Metals as Hydrogenolysis Catalysts

© 2024 chempedia.info