Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal enolates catalysis

One of the most important contributions in metal enolate catalysis is the conjugate addition of arylboronic acids (115) to vinyl ketone derivatives (116) to give the corresponding aryl ketones (117) (equation number of advances have recently... [Pg.567]

With conjugated enone substrates, the alkoxymetallation leads to the formation of a metal enolate that can undergo a facile protonation to accomplish the hydroalkoxylation. Following this mechanism, various /3-alkoxyketones were obtained in good yields by the addition of primary and secondary alcohols to methyl vinyl ketone under cationic Pd(n) catalysis.443 Similarly, [Rh(COD)(OMe)]2 was found to catalyze the hydroalkoxylation of both methyl vinyl ketone and phenyl vinyl ketone (Equation (121)).444... [Pg.683]

The primary literature now contains a very large body of kinetic data for the catalysis of enolization and ketonization, not only of ketones and aldehydes but also of )3-diketones, )3-keto esters, and dienones, much of which could be treated by the Kurz approach. Also, data exist for third-order enolization, due to combined general acid and base catalysis, that could also be analysed. Such treatment is beyond the scope the present review. However, one study of metal ion catalysis of enolization is discussed later in this section. [Pg.49]

One more example of metal ion catalysis will be considered briefly. In a now classic paper, Cox (1974) showed that the enolization of 2-acetylpyri-dine (but not 4-acetylpyridine) is catalysed by divalent transition metal ions. Proton abstraction by acetate ions is strongly accelerated by Zn2+, Ni2+ and Cu2+ ions and the transition state stabilization by these ions roughly parallels their abilities to bind to the substrate (Table A6.5). The three metal ions are significantly superior to the proton as electrophilic catalysts, no doubt because they can chelate to both the pyridine nitrogen and the... [Pg.54]

The effects of cationic and zwitterionic micelles on the keto-enol tautomerism of 2-phenylacetyl-furan and -thiophene (73, X = O, S) have been studied in aqueous media.285 While the micelles perturb the equilibrium only slightly, the apparent acidity of one or other tautomer is increased, as the micelles have an affinity for the enolate. The systems also show lowered water rates at the minima of their pH-rate profiles, allowing an otherwise undetectable metal ion catalysis to be observed. [Pg.32]

Aldol reactions of both (E)- and (Z)-ketene acetals are highly susceptible to KOBuc catalysis. In the presence of 5 mol% of KOBuc, aldol reactions proceeded to completion within minutes at -78 °C < 1994JA7026>. A double-label crossover experiment, devised to probe the nature of the silicon group transfer in the alkoxide-catalyzed aldol reaction, suggested that free metal enolates are the true reactive species adding to the aldehydes. [Pg.548]

Stabilization of enolate anions generated from abstraction of a proton a to a carboxylate Hydrolysis, phosphoryl group transfer via hydrolytic nucleophilic substitution Stabilization of diverse oxyanion intermediates via metal-assisted catalysis Schiff base dependent formation of an electron sink ... [Pg.22]

The chemistry of asymmetric protonation of enols or enolates has further developed since the original review in Comprehensive Asymmetric Catalysis [1], Numbers of literature reports of new chiral proton sources have emerged and several reviews [2-6] cover the topics up to early 2001. This chapter concentrates on new examples of catalytic enantioselective protonation of prochiral metal enolates (Scheme 1). Compounds 1-41 [7-45] shown in Fig. 1 are the chiral proton sources or chiral catalysts reported since 1998 which have been employed for the asymmetric protonation of metal enolates. Some of these have been successfully utilized in the catalytic version. [Pg.141]

Isolation and identification of surface-bonded acetone enolate on Ni(l 11) surfaces show that metal enolate complexes are key intermediates in carbon-carbon bond-forming reactions in both organometaUic chemistry and heterogeneous catalysis. Based on studies on powdered samples of defined surface structure and composition, most of the results were reported for acetone condensation over transition-metal oxide catalysts, as surface intermediate in industrially important processes. With the exception of a preoxidized silver surface, all other metal single-crystal surfaces have suggested that the main adsorption occurs via oxygen lone-pair electrons or di-a bonding of both the carbonyl C and O atoms. [Pg.98]

Metal enolates have played a Umited role in the metal-catalyzed isomerization of al-kenes . As illustrated in a comprehensive review by Bouwman and coworkers, ruthenium complex Ru(acac)3 (51) has been used to isomerize a wide range of substituted double bonds, including aUylic alcohols (131), to the corresponding ketones (132) (equation 38) . The isomerization of aUylic alcohols affords products that have useful applications in natural product synthesis and in bulk chemical processes. An elegant review by Fogg and dos Santos shows how these complexes can be used in tandem catalysis, where an alkene is subjected to an initial isomerization followed by a hydroformylation reaction ... [Pg.570]

The two parts of the present volume contain seventeen chapters written by experts from eleven countries. They cover computational chemistry, structural chemistry by spectroscopic methods, luminescence, thermochemistry, synthesis, various aspect of chemical behavior such as application as synthons, acid-base properties, coordination chemistry, redox behavior, electrochemistry, analytical chemistry and biological aspects of the metal enolates. Chapters are devoted to special families of compounds, such as the metal ynolates and 1,2-thiolenes and, besides their use as synthons in organic and inorganic chemistry, chapters appear on applications of metal enolates in structural analysis as NMR shift reagents, catalysis, polymerization, electronic devices and deposition of metals and their oxides. [Pg.1244]

Metal Enolates. In parallel with additives, transition metals may be added to enolates to give transmetallated species which can undergo cross-coupling chemistry. Perhaps the earliest example of metal-catalyzed enolate reactions is the Reformatsky reaction. Transition metal-catalyzed enolate chemistry has been recently revived in the literature, particularly in the field of asymmetric catalysis. The transition metal-catalyzed coupling reactions of aryl halides, allyl epoxides, and allylic esters with alkyl enolates have been recently investigated. Generally the choice of base employed depends on the substrate and on the reaction performed. For enolate arylation, KHMDS seems to be the most... [Pg.232]

Metal-catalyzed reactions have been of major importance in synthetic organic chemistry. Over the past decade, enantio- and diastereoselective metal-mediated domino catalysis has emerged as an effective tool to construct really highly complex molecules in one-pot processes [2, 4b,d]. Among them, enantioseletcive metal-catalyzed conjugate additions (in particular, Cu-catalyzed 1,4-addition to a,P-unsaturated carbonyl compounds) have been useful components of domino reactions [4d, 5]. The generated metal enolates 2 after the additions of nucleophiles readily react with a variety of electrophiles (Scheme 11.1). Enantioselectivity of 3 depends on the first addition of nucleophiles to the P-position of the unsaturated carbonyl compounds 1. [Pg.419]

General reviews include the direct aldol/" aldoi and related processes,the Zimmerman-Traxler TS model used to explain the stereochemistry of the aldoi condensation,catalysis of direct asymmetric aldols by prolinamides versus prolinef/zioamides, " " the catalytic asymmetric aldoi reaction in aqueous media (considering both organometallic and organocatalytic approaches), " the use of BINAP oxide in enantioselective direct aldols,and the use of metal enolates as synthons. " ... [Pg.17]

Metal-ion catalysis of the base-catalysed enolization and decarboxylation of oxaloac-etate and of the ketonization and condensation of enolpyruvate have been subjected to a Marcus theory analysis. ... [Pg.33]


See other pages where Metal enolates catalysis is mentioned: [Pg.172]    [Pg.120]    [Pg.451]    [Pg.45]    [Pg.24]    [Pg.173]    [Pg.327]    [Pg.551]    [Pg.552]    [Pg.650]    [Pg.1244]    [Pg.186]    [Pg.622]    [Pg.172]    [Pg.969]    [Pg.830]    [Pg.830]    [Pg.328]    [Pg.2]    [Pg.50]    [Pg.243]    [Pg.267]    [Pg.2208]    [Pg.236]    [Pg.328]   


SEARCH



Asymmetric phase-transfer catalysis metal enolates

Catalysis enolization

Enolization metal catalysis

Enolization metal catalysis

Metal enolate

Metal enolates

© 2024 chempedia.info