Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal electrodes, scanning tunneling microscopy applications

Refs. [i] Conway BE (1999) Electrochemical processes involving H adsorbed at metal electrode surfaces. In Wieckowski A (ed) Interfacial electrochemistry, theory, experiment, and applications. Marcel Dekker, New York, pp 131-150 [ii] Climent V, Gomez R, Orts JM, Rodes A, AldazA, Feliu JM (1999) Electrochemistry, spectroscopy, and scanning tunneling microscopy images of small single-crystal electrodes. In Wieckowski A (ed) Interfacial electrochemistry, theory, experiment, and applications. MarcelDekker, New York, pp 463-475 [Hi] Calvo E] (1986) Fundamentals. The basics of electrode reactions. In Bamford CH, Compton RG (eds) Comprehensive chemical kinetics, vol. 26. Elsevier, Amsterdam, pp 1-78... [Pg.94]

Model electrodes with a dehned mesoscopic structure can be generated by a variety of means, e.g., electrodeposition, adsorption from colloidal solutions, and vapor deposition and on a variety of substrates. Such electrodes have relatively well-dehned physico-chemical properties that differ signihcantly from those of the bulk phase. The present work analyzes the application of in-situ STM (scanning tunneling microscopy) and ETIR (Eourier Transformed infrared) spectroscopy in determining the mesoscopic structural properties of these electrodes and the potential effect of these properties on the reactivity of the fuel cell model catalysts. Special attention is paid to the structure and catalytic behavior of supported metal clusters, which are seen as model systems for technical electrocatalysts. [Pg.551]

SECM involves the measurement of the current through an ultramicroelectrode (UME) (an electrode with a radius, a, of the order of a few nm to 25 (zm) when it is held or moved in a solution in the vicinity of a substrate. Substrates, which can be solid surfaces of different types (e.g., glass, metal, polymer, biological material) or liquids (e.g., mercury, immiscible oil), perturb the electrochemical response of the tip, and this perturbation provides information about the nature and properties of the substrate. The development of SECM depended on previous work on the use of ultramicroelectrodes in electrochemistry and the application of piezoelectric elements to position a tip, as in scanning tunneling microscopy (STM). Certain aspects of SECM behavior also have analogies in electrochemical thin-layer cells and arrays of interdigitated electrodes. [Pg.1]

Summary. The importance of flie electrode surface structure in electrochemistry is briefly described. Examples are given in which the structural information provided by scanning tunneling microscopy (STM) is of assistance in clarifying the electrochemical behavior. The importance of surface structure in the photoelectrochemical response of metals is illustrated by an STM application. Finally, the potentialities of newr scanning microprobe techniques suitable for mapping local photoelectrochemical properties of metal surfaces are briefly discussed. [Pg.101]


See other pages where Metal electrodes, scanning tunneling microscopy applications is mentioned: [Pg.83]    [Pg.586]    [Pg.198]    [Pg.235]    [Pg.552]    [Pg.71]    [Pg.93]    [Pg.21]    [Pg.187]    [Pg.275]    [Pg.607]   


SEARCH



Applications, microscopy

Electrodes applications

Metal applications

Metal electrodes, scanning tunneling microscopy

Metallic electrodes

Scanning applications

Scanning tunnel microscopy

Scanning tunneling

Scanning tunneling microscopy

Scanning tunneling microscopy applications

Scanning tunnelling

Scanning tunnelling microscopy

Tunneling microscopy

© 2024 chempedia.info