Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal deposition electrodeposition

Practical growth of solid material phases, such as by vapor phase metal deposition, electrodeposition, etc., occurs away from the idealized thermodynamic models. [Pg.63]

Current synthetic methods for the preparation of Pd-based electrocatalysts for anodes of DAFCs are manifold, including reduction of high-valent metal compounds with chemical agents, colloidal metal deposition, electrodeposition and transmetalation... [Pg.205]

At potentials positive to the bulk metal deposition, a metal monolayer-or in some cases a bilayer-of one metal can be electrodeposited on another metal surface this phenomenon is referred to as underiDotential deposition (upd) in the literature. Many investigations of several different metal adsorbate/substrate systems have been published to date. In general, two different classes of surface stmetures can be classified (a) simple superstmetures with small packing densities and (b) close-packed (bulklike) or even compressed stmetures, which are observed for deposition of the heavy metal ions Tl, Hg and Pb on Ag, Au, Cu or Pt (see, e.g., [63, 64, 65, 66, 62, 68, 69 and 70]). In case (a), the metal adsorbate is very often stabilized by coadsorbed anions typical representatives of this type are Cu/Au (111) (e.g. [44, 45, 21, 22 and 25]) or Cu/Pt(l 11) (e.g. [46, 74, 75, and 26 ]) It has to be mentioned that the two dimensional ordering of the Cu adatoms is significantly affected by the presence of coadsorbed anions, for example, for the upd of Cu on Au(l 11), the onset of underiDotential deposition shifts to more positive potentials from 80"to Br and CE [72]. [Pg.2753]

Composite Plate—an electrodeposit that consists of two or more layers of metals deposited separately. [Pg.47]

An electrodeposited coating is never, in practice, completely uniform in thickness. The actual thickness of metal deposited at a particular point in a given time is dependent on the current density (i.e. the current per unit area) at that point, and the current density is not uniform over the whole surface... [Pg.317]

At the start the cathode is invariably a metal different from that to be deposited. Frequently, the aim is to coat a base metal with a more noble one, but it may not be possible to do this in one step. When a metal is immersed in a plating bath it will corrode unless its potential is sufficiently low to suppress its ionisation. Fortunately, a low rate of corrosion is tolerable for a brief initial period. There are cases where even when a cathode is being plated at a high cathodic (nett) current density, the substrate continues to corrode rapidly because the potential (determined by the metal deposited) is too high. No satisfactory coating forms if the substrate dissolves at a high rate concurrently with electrodeposition. This problem can be overcome by one or more of the following procedures ... [Pg.351]

Electron diffraction investigations showed that epitaxy did indeed exist when one metal was electrodeposited on another, but that it persisted for only tens or hundreds of atomic layers beyond the interface. Thereafter the atomic structure (or lattice) of the deposit altered to one characteristic of the plating conditions. Epitaxy ceased before an electrodeposit is thick enough to see with an optic microscope, and at thicknesses well below those at which pseudomorphism is observed. [Pg.357]

Non-epitaxial electrodeposition occurs when the substrate is a semiconductor. The metallic deposit cannot form strong bonds with the substrate lattice, and the stability conferred by co-ordination across the interface would be much less than that lost by straining the lattices. The case is the converse of the metal-metal interface the stable arrangement is that in which each lattice maintains its equilibrium spacing, and there is consequently no epitaxy. The bonding between the met lic lattice of the electrodeposit and the ionic or covalent lattice of the substrate arises only from secondary or van der Waals forces. The force of adhesion is not more than a tenth of that to a metal substrate, and may be much less. [Pg.357]

When electrodeposition is inhibited the metal becomes harder, less ductile and increases in tensile strength. Metals deposited from acidic solutions of... [Pg.370]

In view of the high cost, when tarnish resistance of the surface is the only requirement it is customary to use the thinnest possible coatings of rhodium (0-000 25-0-000 5 mm). Since rhodium deposits in this thickness range, like thin electrodeposits of other metals, show significant porosity, readily corrodible metals, e.g. steel, zinc-base alloys, etc. must be provided with an undercoating deposit, usually of silver or nickel, which is sufficiently thick to provide a fairly high level of protection to the basis metal even before the final precious metal deposit is applied, and, in this way, to prevent accelerated electrochemical corrosion at pores in the rhodium deposit. [Pg.561]

MaksimoviC, M. D. Theory of the Effect of Electrodeposition at a Periodically Changing Rate on the Morphology of Metal Deposits 19... [Pg.606]

On the basis of obtained data of cyclic voltammograms for 3d metals oxides electrodeposition the optimal conditions (current density, potential, process time, electrolyte composition, temperature) for dense oxide films (Ni, Cr and Co) deposition on steel foil have been elaborated. Data relating to several best films are summarized in Table 1. [Pg.496]

With regard to eqn. (2), which represents the metal deposition half reaction in electroless deposition, in a simplistic sense we see that it is analogous to an electrodeposition process. With respect to the reducing agent reaction, organic [20, 21] and relatively complex inorganic oxidation reactions [22] have similarly been widely studied electrochemically. It is therefore reasonable to think that electroless deposition could be described, or modeled, using an electrochemical approach. [Pg.228]

A method has been developed for differentiating hexavalent from trivalent chromium [33]. The metal is electrodeposited with mercury on pyrolytic graphite-coated tubular furnaces in the temperature range 1000-3000 °C, using a flow-through assembly. Both the hexa- and trivalent forms are deposited as the metal at pH 4.7 and a potential at -1.8 V against the standard calomel electrode, while at pH 4.7, but at -0.3 V, the hexavalent form is selectively reduced to the trivalent form and accumulated by adsorption. This method was applied to the analysis of chromium species in samples of different salinity, in conjunction with atomic absorption spectrophotometry. The limit of detection was 0.05 xg/l chromium and relative standard deviation from replicate measurements of 0.4 xg chromium (VI) was 13%. Matrix interference was largely overcome in this procedure. [Pg.67]

All of these effects combine to provide enhanced yield and improved electrical efficiency. Other benefits which will become apparent include increased limiting currents [7,8], lower overpotentials and improved electrodeposition rates [9]. (Efficiency is defined as the amount metal deposited divided by the amount that should be deposited according to Faraday s laws of electrolysis.)... [Pg.234]

Electrodeposition of Cu for IC fabrication has been used successfully since 1997 for the production of interconnection lines down to 0.20 )Lim width. Electrochemical metal deposition methods represent a very attractive alternative to the conventional IC fabrication processes (33). Development of electrochemical deposition technology for IC fabrication also represents an excellent opportunity for the electrochemists community. This opportunity stems from the fact that new electrochemical deposition processes, producing deposits of different structure and properties, are needed to meet requirements of new, sub-micrometer-range computer technologies. [Pg.5]

In industrial applications of metal deposition a metal M is deposited either on the native metal substrate M or on a foreign metal substrate S. As an example of the former, Cu is electrodeposited on a Cu substrate formed by electroless Cu deposition on an activated nonconductor in the fabrication of printed circuit boards. As an example of the latter, Ni is electrodeposited on Cu in the fabrication of contact pads in the electronics industry. [Pg.131]

In this section we show that some electroless deposits have unique properties compared to electrodeposited, evaporated, or sputtered metal deposits. Our discussion is limited to mechanical and diffusion barrier properties. [Pg.163]

A comparison was made between Ni and Co diffusion barriers produced by electroless, electro-, and evaporation deposition (64). This comparison shows that only electrolessly deposited metals and alloys, at a thickness of 1000 im, have barrier properties for Cu diffusion. For Co(P) 1000-pm-thick barriers, annealed for 14h, the amount of Cu interdiffused into Co(P) is less than 1 at %. Thicker barriers of Ni(P), Ni(B), and Co(B) are required for the same degree of Cu interdiffusion. The same metals, if electrodeposited, both do and do not have inferior barrier properties. This... [Pg.163]

Using specific metal combinations, electrodeposited alloys can be made to exhibit hardening as a result of heat treatment subsequent to deposition. This, it should be noted, causes solid precipitation. When alloys such as Cu-Ag, Cu-Pb, and Cu-Ni are coelectrodeposited within the limits of diffusion currents, equilibrium solutions or supersaturated solid solutions are in evidence, as observed by x-rays. The actual type of deposit can, for instance, be determined by the work value of nucleus formation under the overpotential conditions of the more electronegative metal. When the metals are codeposited at low polarization values, formation of solid solutions or of supersaturated solid solutions results. This is so even when the metals are not mutually soluble in the solid state according to the phase diagram. Codeposition at high polarization values, on the other hand, results, as a rule, in two-phase alloys even with systems capable of forming a continuous series of solid solutions. [Pg.200]


See other pages where Metal deposition electrodeposition is mentioned: [Pg.486]    [Pg.294]    [Pg.301]    [Pg.1235]    [Pg.318]    [Pg.368]    [Pg.536]    [Pg.41]    [Pg.684]    [Pg.685]    [Pg.708]    [Pg.132]    [Pg.116]    [Pg.116]    [Pg.123]    [Pg.9]    [Pg.511]    [Pg.278]    [Pg.263]    [Pg.130]    [Pg.176]    [Pg.220]    [Pg.294]    [Pg.301]    [Pg.47]   


SEARCH



Electrodeposition

Electrodeposition metal deposition fundamentals

Electrodeposits

Metal deposition

Metallic metal deposits

Metals electrodeposition

© 2024 chempedia.info