Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal catalysts , Raman spectroscopy

Bulk Mixed Oxide Catalysts. - Raman spectroscopy of bulk transition metal oxides encompasses a vast and well-established area of knowledge. Hie fundamental vibrational modes for many of the transitional metal oxide complexes have already been assigned and tabulated for systems in the solid and solution phases. Perhaps the most well-known and established of the metal oxides are the tungsten and molybdenum oxides because of their excellent Raman signals and applications in hydrotreating and oxidation catalysis. Examples of these two very important metal-oxide systems are presented below for bulk bismuth molybdate catalysts, in this section, and surface (two-dimensional) tungstate species in a later section. [Pg.121]

Vibrational Spectroscopy. Infrared absorption spectra may be obtained using convention IR or FTIR instrumentation the catalyst may be present as a compressed disk, allowing transmission spectroscopy. If the surface area is high, there can be enough chemisorbed species for their spectra to be recorded. This approach is widely used to follow actual catalyzed reactions see, for example. Refs. 26 (metal oxide catalysts) and 27 (zeolitic catalysts). Diffuse reflectance infrared reflection spectroscopy (DRIFT S) may be used on films [e.g.. Ref. 28—Si02 films on Mo(llO)]. Laser Raman spectroscopy (e.g.. Refs. 29, 30) and infrared emission spectroscopy may give greater detail [31]. [Pg.689]

Raman spectroscopy has provided information on catalytically active transition metal oxide species (e. g. V, Nb, Cr, Mo, W, and Re) present on the surface of different oxide supports (e.g. alumina, titania, zirconia, niobia, and silica). The structures of the surface metal oxide species were reflected in the terminal M=0 and bridging M-O-M vibrations. The location of the surface metal oxide species on the oxide supports was determined by monitoring the specific surface hydroxyls of the support that were being titrated. The surface coverage of the metal oxide species on the oxide supports could be quantitatively obtained, because at monolayer coverage all the reactive surface hydroxyls were titrated and additional metal oxide resulted in the formation of crystalline metal oxide particles. The nature of surface Lewis and Bronsted acid sites in supported metal oxide catalysts has been determined by adsorbing probe mole-... [Pg.261]

Transition metal oxides, rare earth oxides and various metal complexes deposited on their surface are typical phases of DeNO catalysts that lead to redox properties. For each of these phases, complementary tools exist for a proper characterization of the metal coordination number, oxidation state or nuclearity. Among all the techniques such as EPR [80], UV-vis [81] and IR, Raman, transmission electron microscopy (TEM), X-ray absorption spectroscopy (XAS) and NMR, recently reviewed [82] for their application in the study of supported molecular metal complexes, Raman and IR spectroscopies are the only ones we will focus on. The major advantages offered by these spectroscopic techniques are that (1) they can detect XRD inactive amorphous surface metal oxide phases as well as crystalline nanophases and (2) they are able to collect information under various environmental conditions [83], We will describe their contributions to the study of both the support (oxide) and the deposited phase (metal complex). [Pg.112]

Raman spectroscopy has been used for a long time in order to study supported and promoted metal catalysts and oxide catalysts [84] since many information can be obtained (1) identification of different metal oxide phases (2) structural transformations of metal oxide phases (3) location of the supported oxide on the oxide substrate and... [Pg.112]

Bruckner, A. and Kondratenko, E. (2006) Simultaneous operando EPR/UV-vis/laser-Raman spectroscopy - A powerful tool for monitoring transition metal oxide catalysts during reaction, Catal. Today, 113, 16. [Pg.142]

Note that in all the examples discussed so far, infrared spectroscopy gives its information on the catalyst in an indirect way, via hydroxyl groups on the support, or via the adsorption of probe molecules such as CO and NO. The reason why it is often difficult to measure the metal-oxide or metal-sulfide vibrations of the catalytically active phase in transmission infrared spectroscopy is that the frequencies are well below 1000 cm-1, where measurements are difficult because of absorption by the support. Infrared emission and Raman spectroscopy, discussed later on in this chapter, offer better opportunities in this respect. [Pg.231]

Raman spectroscopy has been successfully applied to the investigation of oxidic catalysts. According to Wachs, the number of Raman publications rose to about 80-100 per year at the end of the nineties, with typically two thirds of the papers devoted to oxides [41]. Raman spectroscopy provides insight into the structure of oxides, their crystallinity, the coordination of metal oxide sites, and even the spatial distribution of phases through a sample when the technique is used in microprobe mode. As the frequencies of metal-oxygen vibrations found in a lattice are typically between a few hundred and 1000 cm 1 and are thus difficult to investigate in infrared, Raman spectroscopy is clearly the indicated technique for this purpose. [Pg.235]

Vibrational spectroscopy techniques are quite suitable for in situ characterization of catalysts. Especially infrared spectroscopy has been used extensively for characterization of the electrode/solution interphases, adsorbed species and their dependence on the electrode potential.33,34 Raman spectroscopy has been used to a lesser extent in characterizing non-precious metal ORR catalysts, most of the studies being related to characterization of the carbon structures.35 A review of the challenges and applications associated with in situ Raman Spectroscopy at metal electrodes has been provided by Pettinger.36... [Pg.339]

Surface-enhanced Raman spectroscopy (SERS) has also been employed to characterize metal catalyst surfaces [103], The low sensitivity and severe conditions required for the signal enhancement have limited the use of this technique [104], but some interesting work has been published over the years in this area, including studies on model liquid-solid interfaces [105],... [Pg.15]

Figure 1.13 Raman spectra for a number of transition metal oxides supported on y-AI203 [75,102], Three distinct regions can be differentiated in these spectra, namely, the peaks around 1000 cm-1 assigned to the stretching frequency of terminal metal-oxygen double bonds, the features about 900 cm 1 corresponding to metal-oxygen stretches in tetrahedral coordination sites, and the low-frequency (<400 cm-1) range associated with oxygen-metal-oxygen deformation modes. Raman spectroscopy can clearly complement IR data for the characterization of solid catalysts. (Reproduced with permission from The American Chemical Society.)... Figure 1.13 Raman spectra for a number of transition metal oxides supported on y-AI203 [75,102], Three distinct regions can be differentiated in these spectra, namely, the peaks around 1000 cm-1 assigned to the stretching frequency of terminal metal-oxygen double bonds, the features about 900 cm 1 corresponding to metal-oxygen stretches in tetrahedral coordination sites, and the low-frequency (<400 cm-1) range associated with oxygen-metal-oxygen deformation modes. Raman spectroscopy can clearly complement IR data for the characterization of solid catalysts. (Reproduced with permission from The American Chemical Society.)...
Laser Raman spectroscopy, 24 293-341 see also Raman spectroscopy molecular precursors for tailored metal catalysts, 38 298... [Pg.133]

In this paper, XPS and Raman spectroscopy have been used to study the chemical state and location of Ni and V contaminants. The effects of thermal and hydrothermal treatments on catalyst surface properties, and the role of sepiolite in promoting metals tolerance has been observed and reported. [Pg.196]

In this paper selectivity in partial oxidation reactions is related to the manner in which hydrocarbon intermediates (R) are bound to surface metal centers on oxides. When the bonding is through oxygen atoms (M-O-R) selective oxidation products are favored, and when the bonding is directly between metal and hydrocarbon (M-R), total oxidation is preferred. Results are presented for two redox systems ethane oxidation on supported vanadium oxide and propylene oxidation on supported molybdenum oxide. The catalysts and adsorbates are stuped by laser Raman spectroscopy, reaction kinetics, and temperature-programmed reaction. Thermochemical calculations confirm that the M-R intermediates are more stable than the M-O-R intermediates. The longer surface residence time of the M-R complexes, coupled to their lack of ready decomposition pathways, is responsible for their total oxidation. [Pg.16]

The above discussion demonsi rates that it is possible to molecularly design supported metal oxide catalysts with knowledge of the surface oxide - support interactions made possible by the assistance of characterization methods such as Raman spectroscopy and the methanol oxidation reaction. The formation and location of the surface metal oxide species are controlled by the... [Pg.41]

Characterization Data for Oxide-Supported Metal Catalysts Employed by Research Groups Studying the Adsorption of Hydrocarbons by Infrared (IR) or Raman (Ra) Spectroscopy... [Pg.10]

In contrast, recent work (4-12) has shown that Raman spectroscopy can be used to study Ti) adsorption on oxides, oxide supported metals and on bulk metals [including an unusual effect sometimes termed "enhanced Raman scattering" wherein signals of the order of 10 - 106 more intense than anticipated have been reported for certain molecules adsorbed on silver], (ii) catalytic processes on zeolites, and (iii) the surface properties of supported molybdenum oxide desulfurization catalysts. Further, the technique is unique in its ability to obtain vibrational data for adsorbed species at the water-solid interface. It is to these topics that we will turn our attention. We will mainly confine our discussion to work since 1977 (including unpublished work from our laboratory) because two early reviews (13,14) have covered work before 1974 and two short recent reviews have discussed work up to 1977 (15,16). [Pg.119]

Tinnemans SJ, Kox MHF, Nijhuis TA, Visser T, Weckhuysen BM. Real time quantitative Raman spectroscopy of supported metal oxide catalysts without the need of an internal standard. Physical Chemistry Chemical Physics 2005, 7, 211-216. [Pg.418]


See other pages where Metal catalysts , Raman spectroscopy is mentioned: [Pg.421]    [Pg.213]    [Pg.442]    [Pg.172]    [Pg.91]    [Pg.37]    [Pg.203]    [Pg.345]    [Pg.16]    [Pg.376]    [Pg.422]    [Pg.215]    [Pg.195]    [Pg.360]    [Pg.201]    [Pg.203]    [Pg.32]    [Pg.418]    [Pg.642]    [Pg.713]    [Pg.885]    [Pg.213]    [Pg.119]    [Pg.137]    [Pg.244]    [Pg.155]    [Pg.5]    [Pg.198]   


SEARCH



Catalyst spectroscopy

Catalysts Raman spectroscopy

Dehydrated supported metal oxide catalyst Raman spectroscopy

Metal catalysts , Raman

Metals Raman spectroscopy

Oxide supported metal catalysts Raman spectroscopy

© 2024 chempedia.info