Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal carbonyls activation

On the other hand, metathesis catalysts based on group V and VI metals effectively polymerize mono- and disubstituted alkynes to the corresponding substituted PAs. These catalysts are typically the metal chlorides, used with or without main-group organometallic cocatafysts, or metal carbonyls activated with light (Fig. 7) [110]. The latter e of catalyst is known for Mo and W only. Water can even be used as a cocatalyst with these catalysts for some monomers. For example, WQ5 I/2H2O polymerizes phenylacetylene to a soluble, powdery poly(phenylacetylene) with M = 15,000 g/mol and PDI = 2.06 [113]. [Pg.146]

Conjugated dienes, upon complexation with metal carbonyl complexes, are activated for Friedel-Crafts acylation reaction at the akyhc position. Such reactions are increasingly being used in the stereoselective synthesis of acylated dienes. Friedel-Crafts acetylation of... [Pg.562]

The hydroformylation reaction is carried out in the Hquid phase using a metal carbonyl catalyst such as HCo(CO)4 (36), HCo(CO)2[P( -C4H2)] (37), or HRh(CO)2[P(CgH3)2]2 (38,39). The phosphine-substituted rhodium compound is the catalyst of choice for new commercial plants that can operate at 353—383 K and 0.7—2 MPa (7—20 atm) (39). The differences among the catalysts are found in their intrinsic activity, their selectivity to straight-chain product, their abiHty to isomerize the olefin feedstock and hydrogenate the product aldehyde to alcohol, and the ease with which they are separated from the reaction medium (36). [Pg.51]

Susac et al. [33] showed that the cobalt-selenium (Co-Se) system prepared by sputtering and chemical methods was catalytically active toward the ORR in an acidic medium. Lee et al. [34] synthesized ternary non-noble selenides based on W and Co by the reaction of the metal carbonyls and elemental Se in xylenes. These W-Co-Se systems showed catalytic activity toward ORR in acidic media, albeit lower than with Pt/C and seemingly proceeding as a two-electron process. It was pointed out that non-noble metals too can serve as active sites for catalysis, in fact generating sufficient activity to be comparable to that of a noble metal, provided that electronic effects have been induced by the chalcogen modification. [Pg.317]

Abstract This review is a summary of supported metal clusters with nearly molecular properties. These clusters are formed hy adsorption or sirnface-mediated synthesis of metal carbonyl clusters, some of which may he decarhonylated with the metal frame essentially intact. The decarhonylated clusters are bonded to oxide or zeolite supports by metal-oxygen bonds, typically with distances of 2.1-2.2 A they are typically not free of ligands other than the support, and on oxide surfaces they are preferentially bonded at defect sites. The catalytic activities of supported metal clusters incorporating only a few atoms are distinct from those of larger particles that may approximate bulk metals. [Pg.211]

Metal clusters on supports are typically synthesized from organometallic precursors and often from metal carbonyls, as follows (1) The precursor metal cluster may be deposited onto a support surface from solution or (2) a mononuclear metal complex may react with the support to form an adsorbed metal complex that is treated to convert it into an adsorbed metal carbonyl cluster or (3) a mononuclear metal complex precursor may react with the support in a single reaction to form a metal carbonyl cluster bonded to the support. In a subsequent synthesis step, metal carbonyl clusters on a support may be treated to remove the carbonyl ligands, because these occupy bonding positions that limit the catalytic activity. [Pg.213]

The reaction of an a-halo carbonyl compound with zinc, tin, or indium together with an aldehyde in water gave a direct cross-aldol reaction product (Eq. 8.90).226,227 A direct Reformatsky-type reaction occurred when an aromatic aldehyde reacted with an a-bromo ester in water mediated by zinc in low yields. Recently, it was found that such a reaction mediated by indium was successful and was promoted by son-ication (Eq. 8.91).228 The combination of BiCl3-Al,229 CdCl2-Sm,230 and Zn-Et3B-Eb0231 is also an effective mediator. Bismuth metal, upon activation by zinc fluoride, effected the crossed aldol reaction between a-bromo carbonyl compounds and aldehydes in aqueous media. The reaction was found to be regiospecific and syn-diastereoselective (Eq. 8.92).232... [Pg.265]

These types of clusters represent some of the more modest sizes and geometries detected in homo- and hetero-metal carbonyl clusters. From dimetallic up to pentadecametallic clusters have been defined by crystal structures, and assembly of the metal centers in these clusters adopt a number of well-defined arrangements.83 Redox activity in these polymetallic clusters is anticipated and has been observed. Routes to large carbonyl polymetal clusters have been reviewed 83,84... [Pg.7]

As shown in Fig. 13, a variety of metal carbonyls upon sonication will catalyze the isomerization of 1-pentene to cis- and tram-2-pentene (186). Initial turnover rates are about 1-100 mol 1-pentene isomerized/mol of precatalyst/hour, and represent rate enhancements of 102 5 over thermal controls (174). The relative sonocatalytic and photocatalytic activities of these carbonyls are in general accord. An exception is Ru3(CO)12, which is... [Pg.101]

However, the pathways for these reactions, particularly in the gas phase, have been only -.rtially characterized. In a wide variety of these reactions, coordinatively unsaturated, highly reactive metal carbonyls are produced [1-18]. The products of many of these photochemical reactions act as efficient catalysts. For example, Fe(C0)5 can be used to generate an efficient photocatalyst for alkene isomerization, hydrogenation, and hydrosilation reactions [19-23]. Turnover numbers as high as 3000 have been observed for Fe(C0)5 induced photocatalysis [22]. However, in many catalytically active systems, the active intermediate has not been definitively determined. Indeed, it is only recently that significant progress has been made in this area [20-23]. [Pg.86]

The possible mechanisms which one might invoke for the activation of these transition metal slurries include (1) creation of extremely reactive dispersions, (2) improved mass transport between solution and surface, (3) generation of surface hot-spots due to cavitational micro-jets, and (4) direct trapping with CO of reactive metallic species formed during the reduction of the metal halide. The first three mechanisms can be eliminated, since complete reduction of transition metal halides by Na with ultrasonic irradiation under Ar, followed by exposure to CO in the absence or presence of ultrasound, yielded no metal carbonyl. In the case of the reduction of WClfc, sonication under CO showed the initial formation of tungsten carbonyl halides, followed by conversion of W(C0) , and finally its further reduction to W2(CO)io Thus, the reduction process appears to be sequential reactive species formed upon partial reduction are trapped by CO. [Pg.206]

Cycloaddition of the carbene chromium complexes 97 with CO incorporation provides a versatile method for naphthol synthesis, in which the metallacy-clic intermediates 99 are involved [47]. An alternative entry to 101 is achieved by metal carbonyl-catalyzed rearrangement of the cyclopropenes 98 via the same metalla-cyclobutenes 99 and vinylketene complexes 100 [52], Mo(CO)6 shows a higher activity than Cr(CO)6 and W(CO)6. The vinylketene complex 103 is formed by the regioselective ring cleavage of 1,3,3-trimethylcyelopropene 102 with an excess of Fe2(CO)9 [53]. (Scheme 35 and 36)... [Pg.122]


See other pages where Metal carbonyls activation is mentioned: [Pg.62]    [Pg.69]    [Pg.517]    [Pg.254]    [Pg.263]    [Pg.162]    [Pg.80]    [Pg.208]    [Pg.157]    [Pg.47]    [Pg.209]    [Pg.312]    [Pg.312]    [Pg.314]    [Pg.319]    [Pg.303]    [Pg.37]    [Pg.510]    [Pg.512]    [Pg.234]    [Pg.192]    [Pg.386]    [Pg.273]    [Pg.81]    [Pg.101]    [Pg.109]    [Pg.280]    [Pg.284]    [Pg.103]    [Pg.127]    [Pg.204]    [Pg.205]    [Pg.236]    [Pg.155]    [Pg.385]    [Pg.282]    [Pg.751]    [Pg.42]   
See also in sourсe #XX -- [ Pg.2 , Pg.370 ]




SEARCH



Carbonyl activation

Carbonylation activity

Metal carbonyls catalytic activity

Metal-activated carbon catalysts carbonylation

Transition metal clusters activation of carbonyls

© 2024 chempedia.info