Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metabolism sulfides

The aerobic metabolisms - sulfide oxidation, methanotrophy, and acetotrophy -... [Pg.337]

Carbon disulfide, hydrogen sulfide, and sulfur dioxide should be handled carefully. Hydrogen sulfide in small concentrations can be metabolized, but in higher concentrations it quickly can cause death by respiratory paralysis. [Pg.39]

The nervous system is vulnerable to attack from several directions. Neurons do not divide, and, therefore, death of a neuron always causes a permanent loss of a cell. The brain has a high demand for oxy gen. Lack of oxygen (hypoxia) rapidly causes brain damage. This manifests itself both on neurons and oligodendroglial cells. Anoxic brain damage may result from acute carbon monoxide, cyanide, and hydrogen sulfide poisonings. Carbon monoxide may also be formed in situ in the metabolism of dichloromethylene. [Pg.292]

Biocatalytic access to both antipodal sulfoxides was exploited in total syntheses of bioactive compounds, which is outlined in some representative examples. Biooxidation of functionalized dialkyl sulfides was utilized in the direct synthesis of both enantiomers of sulforaphane and some analogs in low to good yields and stereoselectivities (Scheme 9.27) [206]. This natural product originates from broccoli and represents a potent inducer of detoxification enzymes in mammalian metabolism it might be related to anticarcinogenic properties of plants from the cruciform family. All four possible stereoisomers of methionine (R = Me) and ethionine sulfoxides... [Pg.254]

Organisms also evolved powerful detoxifying mechanisms that remove toxic materials or convert them to non-toxic forms or nutrients. Examples of alterations to non-toxic forms are the conversions of hydrogen sulfide to sulfate and nitrite to nitrate. The prime example of development of the ability to use a toxic substance is the evolution of aerobic metabolism, which converted a serious and widespread toxin, oxygen, into a major resource. This development, as we have seen, greatly increased the productivity of the biosphere and generated the oxygen-rich atmosphere of today s Earth. [Pg.506]

Iron is the most abundant, useful, and important of all metals. For example, in the 70-kg human, there is approximately 4.2 g of iron. It can exist in the 0, I, II, III, and IV oxidation states, although the II and III ions are most common. Numerous complexes of the ferrous and ferric states are available. The Fe(II) and Fe(III) aquo complexes have vastly different pAa values of 9.5 and 2.2, respectively. Iron is found predominantly as Fe (92%) with smaller abundances of Fe (6%), Fe (2.2%), and Fe (0.3%). Fe is highly useful for spectroscopic studies because it has a nuclear spin of. There has been speculation that life originated at the surface of iron-sulfide precipitants such as pyrite or greigite that could have caused autocatalytic reactions leading to the first metabolic pathways (2, 3). [Pg.284]

Sulfides and disulfides can be produced by bacterial reactions in the marine environment. 2-Dimeth-ylthiopropionic acid is produced by algae and by the marsh grass Spartina alternifolia, and may then be metabolized in sediment slurries under anoxic conditions to dimethyl sulfide (Kiene and Taylor 1988), and by aerobic bacteria to methyl sulfide (Taylor and Gilchrist 1991). Further details are given in Chapter 11, Part 2. Methyl sulfide can also be produced by biological methylation of sulfide itself (HS ). Carbon radicals are not the initial atmospheric products from organic sulfides and disulfides, and the reactions also provide an example in which the rates of reaction with nitrate... [Pg.21]

Biological activity can be used in two ways for the bioremediation of metal-contaminated soils to immobilize the contaminants in situ or to remove them permanently from the soil matrix, depending on the properties of the reduced elements. Chromium and uranium are typical candidates for in situ immobilization processes. The bioreduction of Cr(VI) and Ur(VI) transforms highly soluble ions such as CrO and UO + to insoluble solid compounds, such as Cr(OH)3 and U02. The selenate anions SeO are also reduced to insoluble elemental selenium Se°. Bioprecipitation of heavy metals, such as Pb, Cd, and Zn, in the form of sulfides, is another in situ immobilization option that exploits the metabolic activity of sulfate-reducing bacteria without altering the valence state of metals. The removal of contaminants from the soil matrix is the most appropriate remediation strategy when bioreduction results in species that are more soluble compared to the initial oxidized element. This is the case for As(V) and Pu(IV), which are transformed to the more soluble As(III) and Pu(III) forms. This treatment option presupposes an installation for the efficient recovery and treatment of the aqueous phase containing the solubilized contaminants. [Pg.537]

Levels of Significant Exposure to Hydrogen Sulfide - Inhalation 2-2 Levels of Significant Exposure to Hydrogen Sulfide - Oral 2-3 Metabolic Pathways of Hydrogen Sulfide Biotransformation... [Pg.17]

The major metabolic pathway for hydrogen sulfide in the body is the oxidation of sulfide to sulfate, which is excreted in the urine (Beauchamp et al. 1984). The major oxidation product of sulfide is thiosulfate, which is then converted to sulfate the primary location for these reactions is in the liver (Bartholomew et al. 1980). [Pg.82]

FIGURE 2-3. Metabolic Pathways of Hydrogen Sulfide Biotransformation ... [Pg.84]

No studies were located regarding metabolism in humans or animals after oral, dermal, or other routes of exposure to hydrogen sulfide. [Pg.85]

Humans may be exposed to hydrogen sulfide both from its endogenous production or from exogenous sources. Most endogenous production apparently results from the metabolism of sulfhydryl-containing amino acids, e.g., cysteine, by bacteria present in both the intestinal tract and the mouth (Beauchamp et al. 1994 Tonzetich and Carpenter 1971) however, it is also produced in the brain and several smooth muscles, e.g., thoraic aorta, by enzymes found in these tissues (Abe and Kimura 1996 Hosoki et al. 1997). [Pg.93]

Metabolic Effects. Severe metabolic acidosis developed in a worker exposed to hydrogen sulfide generated from a sodium sulfide waste solution being dumped onto acid waste material (Stine et al. [Pg.104]


See other pages where Metabolism sulfides is mentioned: [Pg.663]    [Pg.321]    [Pg.663]    [Pg.321]    [Pg.86]    [Pg.847]    [Pg.283]    [Pg.287]    [Pg.80]    [Pg.32]    [Pg.51]    [Pg.59]    [Pg.84]    [Pg.306]    [Pg.3]    [Pg.22]    [Pg.148]    [Pg.152]    [Pg.316]    [Pg.350]    [Pg.434]    [Pg.580]    [Pg.580]    [Pg.19]    [Pg.474]    [Pg.48]    [Pg.58]    [Pg.62]    [Pg.78]    [Pg.81]    [Pg.82]    [Pg.86]    [Pg.89]    [Pg.91]    [Pg.91]    [Pg.93]    [Pg.99]    [Pg.104]   


SEARCH



© 2024 chempedia.info