Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Meta oxides catalysts

Metal-metal bonding, 1, 137, 169 gravimetry, 1, 525 history7, 1, 21, 23 nomenclature, 1,122, 123 Metal nitrosyls structure, 1, 16 Meta) oxides catalysts... [Pg.163]

I 7 7 Oxidation Reactions over Supported Meta Oxide Catalysts... [Pg.494]

Meta/ Oxides. The metal oxides aie defined as oxides of the metals occurring in Groups 3—12 (IIIB to IIB) of the Periodic Table. These oxides, characterized by high electron mobiUty and the positive oxidation state of the metal, ate generally less active as catalysts than are the supported nobel metals, but the oxides are somewhat more resistant to poisoning. The most active single-metal oxide catalysts for complete oxidation of a variety of oxidation reactions are usually found to be the oxides of the first-tow transition metals, V, Cr, Mn, Fe, Co, Ni, and Cu. [Pg.503]

Synthetic phenol capacity in the United States was reported to be ca 1.6 x 10 t/yr in 1989 (206), almost completely based on the cumene process (see Cumene Phenol). Some synthetic phenol [108-95-2] is made from toluene by a process developed by The Dow Chemical Company (2,299—301). Toluene [108-88-3] is oxidized to benzoic acid in a conventional LPO process. Liquid-phase oxidative decarboxylation with a copper-containing catalyst gives phenol in high yield (2,299—304). The phenoHc hydroxyl group is located ortho to the position previously occupied by the carboxyl group of benzoic acid (2,299,301,305). This provides a means to produce meta-substituted phenols otherwise difficult to make (2,306). VPOs for the oxidative decarboxylation of benzoic acid have also been reported (2,307—309). Although the mechanism appears to be similar to the LPO scheme (309), the VPO reaction is reported not to work for toluic acids (310). [Pg.345]

The oxidation of phenol, ortho/meta cresols and tyrosine with Oj over copper acetate-based catalysts at 298 K is shown in Table 3 [7]. In all the cases, the main product was the ortho hydroxylated diphenol product (and the corresponding orthoquinones). Again, the catalytic efficiency (turnover numbers) of the copper atoms are higher in the encapsulated state compared to that in the "neat" copper acetate. From a linear correlation observed [7] between the concentration of the copper acetate dimers in the molecular sieves (from ESR spectroscopic data) and the conversion of various phenols (Fig. 5), we had postulated [8] that dimeric copper atoms are the active sites in the activation of dioxygen in zeolite catalysts containing encapsulated copper acetate complexes. The high substratespecificity (for mono-... [Pg.186]

In 1998, Yang and coworkers reported a series of (7 )-carvone derived ketones (63) containing a quaternary center at and various substituents at (Fig. 22) [119]. The ees of fran -stilbene oxide varied with different para and meta substituents when 63b was used as the catalyst. The major contribution for the observed ee difference is from the n-n electronic repulsion between the Cl atom of the catalyst and the phenyl group of the substrate. The substitution at also influences the epoxidation transition state via an electrostatic interaction between the polarized C -X bond and the phenyl ring on franx-stilbene (Table 6, entries 3-7, 10-14). In 2000, Solladie-Cavallo and coworkers reported a series of fluorinated carbocyclic ketones... [Pg.219]

Dynamic effects are a potentially important but easily overlooked aspect of heterogeneous catalysis that can nonetheless impact the accuracy of our knowledge and predictions. For example, multiple co-existing meta-stable surface oxide phases have been identified for Pd and Ag interacting with oxygen, which suggests that the catalyst surfaces may be in a state of flux under reaction conditions, adding new uncertainty to the nature of the... [Pg.146]

Oxidation of ortho-xylene. The spectra of the adsorbed species arising from interaction of ortho-xylene with the surface of the vanadia-titania catalyst in the presence of oxygen are shown in Figure 4. The spectra show some parallel features with respect to those discussed above concerning the oxidation of toluene and meta- and para-xylene. Also in this case the o-methyl-benzyl species begins to transform above 373 K, with production of adsorbed o-tolualdehyde (band at 1635 cm 0 and of a quinone derivative (band at 1670 cm. Successively bands likely due to o-toluate species (1530,1420 cm 0 grow first and decrease later with production of CO2 gas. [Pg.174]

Chiral (salen)Mn(III)Cl complexes are useful catalysts for the asymmetric epoxidation of isolated bonds. Jacobsen et al. used these catalysts for the asymmetric oxidation of aryl alkyl sulfides with unbuffered 30% hydrogen peroxide in acetonitrile [74]. The catalytic activity of these complexes was high (2-3 mol %), but the maximum enantioselectivity achieved was rather modest (68% ee for methyl o-bromophenyl sulfoxide). The chiral salen ligands used for the catalysts were based on 23 (Scheme 6C.9) bearing substituents at the ortho and meta positions of the phenol moiety. Because the structures of these ligands can easily be modified, substantia] improvements may well be made by changing the steric and electronic properties of the substituents. Katsuki et al. reported that cationic chiral (salen)Mn(III) complexes 24 and 25 were excellent catalysts (1 mol %) for the oxidation of sulfides with iodosylbenzene, which achieved excellent enantioselectivity [75,76]. The best result in this catalyst system was given by complex 24 in the formation of orthonitrophenyl methyl sulfoxide that was isolated in 94% yield and 94% ee [76]. [Pg.341]

Oxidation of 2,3-dihydrobenzodiazepines by various oxidants (H202, Se02, peracids, etc.) normally gives resinous reaction products which cannot be easily identified. However, described in [107] is the oxidation of 7V-bezoyl derivatives of benzodiazepines 97 by meta-chloroperbenzoic acid in the presence of sodium bicarbonate and triethylbenzyl ammonium chloride (used as an interphase catalyst) which yields compounds 98 (Scheme 4.32). [Pg.163]

The Oxidation of Sulphur Dioxide. - This very important reaction is probably the oldest one in which vanadium catalysts have been used in practice. It is generally assumed that in these catalysts the vanadium is present dissolved in a liquid mixture of alkali metal meta- and/or pyro-sulphates. Villadsen and Livbjerg3 recently reviewed the properties of these supported liquid phase catalysts and showed that a number of questions still remain unanswered. Urbanek et al.la and Kenney75 presented reviews of the catalytic oxidation of S02, considering both the kinetics and problems of industrial reaction design. [Pg.114]

In 1983, Mimoun and co-workers reported that benzene can be oxidized to phenol stoichiometrically with hydrogen peroxide in 56% yield, using peroxo-vana-dium complex 1 (Eq. 2) [20]. Oxidation of toluene gave a mixture of ortho-, meta-and para-cresols with only traces of benzaldehyde. The catalytic version of the reaction was described by Shul pin[21] and Conte [22]. In both cases, conversion of benzene was low (0.3-2%) and catalyst turned over 200 and 25 times, respectively. The reaction is thought to proceed through a radical chain mechanism with an electrophilic oxygen-centered and vanadium-bound radical species [23]. [Pg.102]

Three papers have appeared in the past two years on catalysts that are either supported on polymers or are heterogeneous. Djakovitch first reported animation reactions catalyzed by palladium particles immobilized on metal oxide supports, as well as by palladium complexes contained in NaY zeolites [172]. In most cases, these reactions were conducted at high temperatures, generally 135 °C. When NaOtBu was used as the base, competing amination through a benzyne intermediate was observed. Thus, para meta regioselectivity was not high, and reaction yields were modest. [Pg.129]

Meta-4 A process for converting ethylene and 2-butene into propylene by metathesis. The process operates in the liquid phase at low temperatures in the presence of heterogeneous catalyst based on rhenium oxide on alumina. The catalyst is constantly regenerated by coke combustion. Developed by IFP and the Chinese Petroleum Corporation of Taiwan. A demonstration plant was operated from 1988 to 1990 and the process was demonstrated at Kaohsiung, Taiwan, in 1999. Now offered by Axens. [Pg.234]

Ti-MOR promoted the ring hydroxylation of toluene, ethylbenzene and xylenes with negligible oxidation of the ethyl side chain [59]. In the same study, however, and in contrast to earlier ones, a similar result was also reported for TS-1. No oxidation of benzylic methyls was observed. Cumene yielded mainly the decomposition products of cumyl hydroperoxide. The oxidation of t-butylbenzene was negligibly low. The reachvity order, toluene > benzene > ethylbenzene > cumene, reflects the reduced steric constraints in the large pores of mordenite. Accordingly, the rate of hydroxylation ofxylene isomers increased in the order para < ortho < meta, in contrast to the sterically controlled one, ortho < meta para, shown on TS-1. It is worth menhoning that the least hindered p-xylene exhibited the same reactivity on either catalyst. [Pg.717]


See other pages where Meta oxides catalysts is mentioned: [Pg.54]    [Pg.292]    [Pg.475]    [Pg.412]    [Pg.54]    [Pg.122]    [Pg.711]    [Pg.183]    [Pg.480]    [Pg.390]    [Pg.84]    [Pg.51]    [Pg.129]    [Pg.123]    [Pg.111]    [Pg.144]    [Pg.369]    [Pg.168]    [Pg.173]    [Pg.78]    [Pg.369]    [Pg.181]    [Pg.538]    [Pg.193]    [Pg.410]    [Pg.31]    [Pg.673]    [Pg.390]    [Pg.14]    [Pg.208]    [Pg.413]    [Pg.875]    [Pg.215]   


SEARCH



Meta) oxides supported catalysts

Meta, oxides

Meta, oxides oxidations

© 2024 chempedia.info