Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mesoporous mechanized

Kresge C T, Leonowicz M E, Roth W J, Vartuli J C and Beck J S 1992 Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism Nature 359 710-12... [Pg.2791]

The time is perhaps not yet ripe, however, for introducing this kind of correction into calculations of pore size distribution the analyses, whether based on classical thermodynamics or statistical mechanics are being applied to systems containing relatively small numbers of molecules where, as stressed by Everett and Haynes, the properties of matter must exhibit wide fluctuations. A fuller quantitative assessment of the situation in very fine capillaries must await the development of a thermodynamics of small systems. Meanwhile, enough is known to justify the conclusion that, at the lower end of the mesopore range, the calculated value of r is almost certain to be too low by many per cent. [Pg.154]

It follows therefore that the specific surface of a mesoporous solid can be determined by the BET method (or from Point B) in just the same way as that of a non-porous solid. It is interesting, though not really surprising, that monolayer formation occurs by the same mechanism whether the surface is wholly external (Type II isotherm) or is largely located on the walls of mesopores (Type IV isotherm). Since the adsorption field falls off fairly rapidly with distance from the surface, the building up of the monolayer should not be affected by the presence of a neighbouring surface which, as in a mesopore, is situated at a distance large compared with the size of a molecule. [Pg.168]

A vast amount of research has been undertaken on adsorption phenomena and the nature of solid surfaces over the fifteen years since the first edition was published, but for the most part this work has resulted in the refinement of existing theoretical principles and experimental procedures rather than in the formulation of entirely new concepts. In spite of the acknowledged weakness of its theoretical foundations, the Brunauer-Emmett-Teller (BET) method still remains the most widely used procedure for the determination of surface area similarly, methods based on the Kelvin equation are still generally applied for the computation of mesopore size distribution from gas adsorption data. However, the more recent studies, especially those carried out on well defined surfaces, have led to a clearer understanding of the scope and limitations of these methods furthermore, the growing awareness of the importance of molecular sieve carbons and zeolites has generated considerable interest in the properties of microporous solids and the mechanism of micropore filling. [Pg.290]

The mesopores make some contribution to the adsorptive capacity, but thek main role is as conduits to provide access to the smaller micropores. Diffusion ia the mesopores may occur by several different mechanisms, as discussed below. The macropores make very Htde contribution to the adsorptive capacity, but they commonly provide a major contribution to the kinetics. Thek role is thus analogous to that of a super highway, aHowkig the adsorbate molecules to diffuse far kito a particle with a minimum of diffusional resistance. [Pg.254]

We showed that these mesoporous silica materials, with variable pore sizes and susceptible surface areas for functionalization, can be utilized as good separation devices and immobilization for biomolecules, where the ones are sequestered and released depending on their size and charge, within the channels. Mesoporous silica with large-pore-size stmctures, are best suited for this purpose, since more molecules can be immobilized and the large porosity of the materials provide better access for the substrates to the immobilized molecules. The mechanism of bimolecular adsorption in the mesopore channels was suggested to be ionic interaction. On the first stage on the way of creation of chemical sensors on the basis of functionalized mesoporous silica materials for selective determination of herbicide in an environment was conducted research of sorption activity number of such materials in relation to 2,4-D. [Pg.311]

The effects of the concentration of divinylbenzene on pore-size distribution and surface areas of micropores, mesopores, and macropores in monosized PS-DVB beads prepared in the presence of linear polymeric porogens have been studied (65). While the total surface area is clearly determined by the content of divinylbenzene, the sum of pore volumes for mesoforms and macropores, as well as their pore-size distribution, do not change within a broad range of DVB concentrations. However, the more cross-linked the beads, the better the mechanical and hydrodynamic properties. [Pg.19]

Kokufuta, E Jinbo, E, A Hydrogel Capable of Facilitating Polymer Diffusion through the Gel Porosity and Its Application in Enzyme Immobilization, Macromolecules 25, 3549, 1992. Kresge, CT Leonowicz, ME Roth, WJ Vartuli, JC Beck, JS, Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism, Nature 359, 710, 1992. [Pg.614]

Classical commercial ceramic porous materials, as those obtained via sol-gel processes, generally have adequate permeabilities but could present some drawbacks They indeed have a limited thermal stability and are generally not permselective enough their pores are in the mesoporous range and maximum separation factors correspond to Knudsen diffusion mechanisms. [Pg.127]

In any case, it is interesting to note that catalytic efficacy has been observed with nano- or mesoporous gold sponges [99-101, 145] suggesting that neither a discrete particle nor an oxide support is actually a fundamental requirement for catalysis. An alternative mechanism invokes the nanoscale structural effect noted in Section 7.2.2, and proposes that the catalytic effect of nanoscale gold structures is simply due to the presence of a large proportion of lowly-coordinated surface atoms, which would have their own, local electronic configurations suitable for the reaction to be catalyzed [34, 49,146] A recent and readily available study by Hvolbaek et al. [4] summarizes the support for this alternate view. [Pg.335]

Scheme 1. Inclusion of size-controlled PVP-protected Pt nanoparticles in calcined mesoporous SBA-15 silica matrices. Mechanical agitation by low-power sonication affords a high dispersion of nanoparticles ranging in size from 1 to 7nm in the mesopore channels. The method is referred to as capillary inclusion (Cl). The technique is limited by the size of nanoparticles that can fit into the 6-9 nm diameter mesopores [13]. (Reprinted from Ref [13], 2005, with permission from American Chemical Society.)... Scheme 1. Inclusion of size-controlled PVP-protected Pt nanoparticles in calcined mesoporous SBA-15 silica matrices. Mechanical agitation by low-power sonication affords a high dispersion of nanoparticles ranging in size from 1 to 7nm in the mesopore channels. The method is referred to as capillary inclusion (Cl). The technique is limited by the size of nanoparticles that can fit into the 6-9 nm diameter mesopores [13]. (Reprinted from Ref [13], 2005, with permission from American Chemical Society.)...
The mechanical incorporation of active nanoparticles into the silica pore structure is very promising for the general synthesis of supported catalysts, although particles larger than the support s pore diameter cannot be incorporated into the mesopore structure. To overcome this limitation, pre-defined Pt particles were mixed with silica precursors, and the mesoporous silica structures were grown by a hydrothermal method. This process is referred to as nanoparticle encapsulation (NE) (Scheme 2) [16] because the resulting silica encapsulates metal nanoparticles inside the pore structure. [Pg.157]

Mn impregnated into MCM-4i, a silicalite containing uniform mesopores of approximately 22 A, catalyzes TBHP epoxidation of alkenes.88 Over Mn-MCM-41, both cis- and trans-stilbene yield trans-stilbene oxide, which the authors conclude signals a radical mechanism.88 In contrast, over Ti—MCM-41, trans-stilbene cannot be oxidized, only cis-stilbene is epoxidized to the cis-stilbene oxide, which suggest a radical-free mechanism.89 Finally, emphasizing the shape selectivity possibilities, only trans-stilbene (not cis-stilbene) can be epoxidized over Mn-ZSM-5, a zeolite with relatively small pores of 5.1 x 5.4 A (Fig. 6.14).88... [Pg.241]

After the review of literature, we report here the results of the degradation of phenol, carried out in our laboratory in the presence of ultrasound, Ti02, rare earths and transition metal ions to highlight our interpretation of the mechanism. Various transition metal salts are known for their catalytic properties due to partly filled d-orbital of the metal atom. Mesoporous transition metal oxides are used not... [Pg.294]

Another interesting type of novel carbons applicable for supercapacitors, consists of a carbon/carbon composite using nanotubes as a perfect backbone for carbonized polyacrylonitrile. Multiwalled carbon nanotubes (MWNTs), due to their entanglement form an interconnected network of open mesopores, which makes them optimal for assuring good mechanical properties of the electrodes while allowing an easy diffusion of ions. [Pg.31]

Fig. 2.29 Reaction mechanism on acetalization of cyclohexanone within unhydrolyzed mesoporous silica materials. Adapted from [107], W. Otani et al., Chem. Eur.J. 2007, 73, 1731-1736. Fig. 2.29 Reaction mechanism on acetalization of cyclohexanone within unhydrolyzed mesoporous silica materials. Adapted from [107], W. Otani et al., Chem. Eur.J. 2007, 73, 1731-1736.
Patarin, J., Lebeau, B. and Zana, R. (2002) Recent advances in the formation mechanisms of organized mesoporous materials. Current Opinion in Colloid and Interface Science,... [Pg.103]

Recent reports describe the use of various porous carbon materials for protein adsorption. For example, Hyeon and coworkers summarized the recent development of porous carbon materials in their review [163], where the successful use of mesoporous carbons as adsorbents for bulky pollutants, as electrodes for supercapacitors and fuel cells, and as hosts for protein immobilization are described. Gogotsi and coworkers synthesized novel mesoporous carbon materials using ternary MAX-phase carbides that can be optimized for efficient adsorption of large inflammatory proteins [164]. The synthesized carbons possess tunable pore size with a large volume of slit-shaped mesopores. They demonstrated that not only micropores (0.4—2 nm) but also mesopores (2-50 nm) can be tuned in a controlled way by extraction of metals from carbides, providing a mechanism for the optimization of adsorption systems for selective adsorption of a large variety of biomolecules. Furthermore, Vinu and coworkers have successfully developed the synthesis of... [Pg.132]

SANS study of the mechanisms and kinetics of the synthesis of mesoporous materials from micelles of tri-block copolymers... [Pg.53]

In the near future, we wish to extend kinetics experiments to other synthesis of mesoporous materials, in order to determine how the self-assembly mechanisms are changing with respect to the type of synthesis. [Pg.58]


See other pages where Mesoporous mechanized is mentioned: [Pg.460]    [Pg.95]    [Pg.99]    [Pg.19]    [Pg.33]    [Pg.38]    [Pg.193]    [Pg.103]    [Pg.334]    [Pg.383]    [Pg.384]    [Pg.389]    [Pg.114]    [Pg.357]    [Pg.727]    [Pg.421]    [Pg.42]    [Pg.113]    [Pg.148]    [Pg.465]    [Pg.55]    [Pg.209]    [Pg.225]    [Pg.245]    [Pg.248]    [Pg.363]    [Pg.84]   
See also in sourсe #XX -- [ Pg.1320 ]




SEARCH



Formation mechanism mesoporous silica

Mechanism for Formation of Pt Nanowires in Mesoporous Silica Templates

Mesopore Formation Mechanisms

Mesopores formation mechanisms

Mesoporous formation mechanisms

Mesoporous materials periodic, synthesis mechanisms

Ordered mesoporous carbons formation mechanisms

Periodic mesoporous silicas mechanism

Synthesis of Mesoporous Materials Formation Mechanism

© 2024 chempedia.info