Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Menthol, formation

A remarkable increase of menthol formation took place due to the presence of cyclodextrins, while the appearance of both epimers (neomenthol and neoiso-methol) was hindered. [Pg.339]

The remarkable enhancement of menthol formation (and the significant decrease of the formation of menthol epimers) as a result of cyclodextrin complexation may be of practical importance. [Pg.339]

For the reaction model, it is assumed that the influence of pressure as described by Eqs. (6.17.9) and (6.17.10) does not depend on temperature. Consequently, the two reversible reactions of menthol formation can be described by the rate constants of the forward reactions and the two equilibrium constants. Table 6.17.1 gives the values of the respective parameters. [Pg.766]

The differences in composition between the two essential oils examined show well, if they be compared with those which exist between the essential oils of the leaves and the inflorescences, that the distribution of the odorous principles between the leaf, the organ of production, and the flower, the organ of consumption, tends to take place according to their relative solubilities. But this tendency may be inhibited, or on the other hand, it may be favoured by the chemical metamorphoses which the substances undergo at any particular point of their passage or at any particular centre of accumulation. Thus, in the present case, some of the least soluble principles, the esters of menthol, are most abundant in the oil of the leaves, whilst another, menthone, is richest in the oil of an organ to which there go, by circulation, nevertheless, the most soluble portions. This is because this organ (the flower) constitutes the. medium in which the formation of this insoluble principle is particularly active. [Pg.22]

Pure piperitone was subjected to the action of purified hydrogen, in the presence of a nickel catalyst, for six hours, the temperature ranging between 175° to 180° C. The double bond in piperitone was readily opened out with the formation of menthone, but further action of the hydrogen under these conditions did not reduce the carbonyl group, even after continued treatment for two days. Under correct conditions, however, the reduction to menthol should take place. The ease with which menthone is formed in this way is of special interest, not only in connection with the production of this ketone, but also as a stage in the manufacture of menthol. [Pg.240]

Lewis acids, results in the formation of isopulegol (43) with greater than 98% diastereoselectivity isopulegol (43), wherein all of the ring substituents are equatorially oriented, arises naturally from a chairlike transition state structure in which the C-3 methyl group, the coordinated C-l aldehyde carbonyl, and the A6,7 double bond are all equatorial (see 48). A low-temperature crystallization raises the chemical and enantiomeric purity of isopulegol (43) close to 100%. Finally, hydrogenation of the double bond in 43 completes the synthesis of (-)-menthol (1). [Pg.357]

Fischer alkenylcarbene complexes undergo cyclopentannulation to alkenyl AT,AT-dimethylhydrazones (1-amino-1-azadienes) to furnish [3C+2S] substituted cyclopentenes in a regio- and diastereoselective way along with minor amounts of [4S+1C] pyrrole derivatives. Enantiopure carbene complexes derived from (-)-8-(2-naphthyl)menthol afford mixtures of trans,trans-cycloipentenes and ds,ds-cyclopentenes with excellent face selectivity [75]. The mechanism proposed for the formation of these cyclopentene derivatives is outlined in Scheme 28. The process is initiated by nucleophilic 1,2-attack of the carbon... [Pg.80]

Metal-catalyzed C-H bond formation through isomerization, especially asymmetric variant of that, is highly useful in organic synthesis. The most successful example is no doubt the enantioselective isomerization of allylamines catalyzed by Rh(i)/TolBINAP complex, which was applied to the industrial synthesis of (—)-menthol. A highly enantioselective isomerization of allylic alcohols was also developed using Rh(l)/phosphaferrocene complex. Despite these successful examples, an enantioselective isomerization of unfunctionalized alkenes and metal-catalyzed isomerization of acetylenic triple bonds has not been extensively studied. Future developments of new catalysts and ligands for these reactions will enhance the synthetic utility of the metal-catalyzed isomerization reaction. [Pg.98]

In the Rh-BINAP-catalyzed allyl amine isomerization step used in Takasago s Menthol process, the catalyst is inhibited by water through the formation of a hydroxyl-bridged rhodium trinuclear complex [ Rh(BINAP) i(/<2-0H)2]C104 [61]. [Pg.1503]

Chapter 2 to 6 have introduced a variety of reactions such as asymmetric C-C bond formations (Chapters 2, 3, and 5), asymmetric oxidation reactions (Chapter 4), and asymmetric reduction reactions (Chapter 6). Such asymmetric reactions have been applied in several industrial processes, such as the asymmetric synthesis of l-DOPA, a drug for the treatment of Parkinson s disease, via Rh(DIPAMP)-catalyzed hydrogenation (Monsanto) the asymmetric synthesis of the cyclopropane component of cilastatin using a copper complex-catalyzed asymmetric cyclopropanation reaction (Sumitomo) and the industrial synthesis of menthol and citronellal through asymmetric isomerization of enamines and asymmetric hydrogenation reactions (Takasago). Now, the side chain of taxol can also be synthesized by several asymmetric approaches. [Pg.397]

Brimble and coworkers172 reported the asymmetric Diels-Alder reactions between quinones 265 bearing a menthol chiral auxiliary and cyclopentadiene (equation 73). When zinc dichloride or zinc dibromide was employed as the Lewis acid catalyst, the reaction proceeded with complete endo selectivity, but with only moderate diastereofacial selectivity affording 3 1 and 2 1 mixtures of 266 and 267 (dominant diastereomer unknown), respectively. The use of stronger Lewis acids, such as titanium tetrachloride, led to the formation of fragmentation products. Due to the inseparability of the two diastereomeric adducts, it proved impossible to determine which one had been formed in excess. [Pg.391]

The synthesis of menthol is given in the reaction scheme, Figure 5. 6. The key reaction [2] is the enantioselective isomerisation of the allylamine to the asymmetric enamine. It is proposed that this reaction proceeds via an allylic intermediate, but it is not known whether the allyl formation is accompanied by a base-mediated proton abstraction or hydride formation. [Pg.104]

In order to explain the formation of nortricyclene from 2-ea o-norbornanol, it is necessary to assume a back side attack at the hydrogen attached to carbon 6. The general mechanism here is similar to the trans elimination reaction as discussed under menthol, 1,4-cyclohexanediol, and bornanols. [Pg.71]

The dehydration to 1-butene proceeds most probably via a trans elimination reaction. The formation of 2-butenes, which were the primary products of reaction, can best be explained by a removal of hydrogen from a y-carbon atom, as was indicated in the case of menthols ... [Pg.75]

Evidence was presented to show participation of the hydrogen on the y-carbon atom relative to the hydroxyl group. This leads to the formation of l-p-menthene from menthol, optically active cam phene from bornanols, allylbenzene from 2-phenylpropanol, etc. [Pg.90]

The addition of different organometallics to the aldehyde function of 231, obtained by the regio- and diastereo-selective ring closure of (—)-8-(benzylamino)menthol 234 and 2-(t>-formylphenyl)acetaldehyde, resulted in formation of a mixture of diastereomeric secondary alcohols 232 and 233. The formation of the major diastereomers 232 was... [Pg.405]

In synthetic efforts toward the DNA reactive alkaloid naphthyridinomycin (164), Gamer and Ho (41) reported a series of studies into the constmction of the diazobicyclo[3.2.1]octane section. Constmction of the five-membered ring, by the photolytic conversion of an aziridine to an azomethine ylide and subsequent alkene 1,3-dipolar cycloaddition, was deemed the best synthetic tactic. Initial studies with menthol- and isonorborneol- tethered chiral dipolarophiles gave no facial selectivity in the adducts formed (42). However, utilizing Oppolzer s sultam as the chiral controlling unit led to a dramatic improvement. Treatment of ylide precursor 165 with the chiral dipolarophile 166 under photochemical conditions led to formation of the desired cycloadducts (Scheme 3.47). The reaction proceeded with an exo/endo ratio of only 2.4 1 however, the facial selectivity was good at >25 1 in favor of the desired re products. The products derived from si attack of the ylide... [Pg.199]

Chiral alkenes derived from ot,p-unsaturated aldehydes have also been applied in asymmetric 1,3-dipolar cycloadditions (142). Soucy et al. (142) used (—)-8-(benzylamino)menthol (94) and acrolein for the exclusive formation of 95 having an equatorial C(2) vinyl group (Scheme 12.31). The 1,3-dipolar cycloaddition of acetonitrile oxide with 95 gave 96 with a selectivity of > 90% de. [Pg.839]

In certain cases, especially for neutral substrates, the formation of covalent p,n-pairs, instead of salts, may be necessary to achieve optical resolution by crystallization. Suitable derivatives are esters of camphanic acid (1) or chrysanthemic acid (2) with racemic alcohols, or esters of menthol (3) and 1-phenylethanol (5) with racemic acids, or hydrazones of menthylhydrazine (4) with racemic aldehydes and ketones. [Pg.84]

Pure citronellal is a colorless liquid with a refreshing odor, reminiscent of balm mint. Upon catalytic hydrogenation, citronellal yields dihydrocitronellal, citro-nellol, or dihydrocitronellol, depending on the reaction conditions. Protection of the aldehyde group, followed by addition of water to the double bond in the presence of mineral acids or ion-exchange resins results in formation of 3,7-dimethyl-7-hydroxyoctan-l-al (hydroxydihydrocitronellal). Acid-catalyzed cycli-zation to isopulegol is an important step in the synthesis of (-)-menthol. [Pg.39]

Alkylation of m-cresol with propene in the presence of an aluminium catalyst results in the formation of thymol, which upon hydrogenation gives a rnkture of all eight isomers of menthol, D-menthol, L-menthol, neomenthol, isomenthol and neoisomenthol (Scheme 13.3). The preferred isomer is L-menthol, because of its ability to induce physiologically the sense of cold which is desired in many products such as chewing gum and toothpaste L-menthol is about... [Pg.289]

Kaplun-Frischoff Y, Touitou E. Testosterone skin permeation enhancement by menthol through formation of eutectic with drug and interaction with skin lipids. J Pharm Sci 1997 86 1394-1399. [Pg.267]


See other pages where Menthol, formation is mentioned: [Pg.44]    [Pg.44]    [Pg.229]    [Pg.19]    [Pg.143]    [Pg.144]    [Pg.343]    [Pg.17]    [Pg.192]    [Pg.239]    [Pg.302]    [Pg.236]    [Pg.353]    [Pg.60]    [Pg.472]    [Pg.340]    [Pg.501]    [Pg.399]    [Pg.1057]    [Pg.165]    [Pg.290]    [Pg.229]    [Pg.501]    [Pg.229]    [Pg.19]    [Pg.945]    [Pg.126]    [Pg.167]   
See also in sourсe #XX -- [ Pg.1189 ]




SEARCH



Menthol

© 2024 chempedia.info