Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Membrane transport potential

FIGURE 21.32 Outward transport of ATP (via the ATP/ADP transloease) is favored by the membrane electrochemical potential. [Pg.701]

The results given here suggest that, though Eq. (3) is simple, the relation involved in the equation might be very important to elucidate the membrane transport phenomena under a membrane potential applied not only by an external electric source but also by chemicals such as redox agents. [Pg.494]

P-glycoprotein, a plasma membrane transport protein, is present in the gut, brain, liver, and kidneys 42 This protein provides a biologic barrier by eliminating toxic substances and xenobiotics that may accumulate in these organs. P-glycoprotein plays an important role in the absorption and distribution of many medications. Medications that are CYP3A4 substrates, inhibitors, or inducers are also often affected by P-glycoprotein therefore, the potential for even more DDIs exists in transplant recipients.42... [Pg.843]

Tsai, R.-S. El Tayar N. Carrupt, R-A. Testa, B., Physicochemical properties and transport behavior of piribedil Considerations on its membrane-crossing potential, Int. J. Pharm. 80, 39 49 (1992). [Pg.272]

Active transport. The definition of active transport has been a subject of discussion for a number of years. Here, active transport is defined as a membrane transport process with a source of energy other than the electrochemical potential gradient of the transported substance. This source of energy can be either a metabolic reaction (primary active transport) or an electrochemical potential gradient of a substance different from that which is actively transported (secondary active transport). [Pg.460]

Figure 1.1 The dopamine transporter terminates the action of released dopamine by transport back into the presynaptic neuron. Dopamine transport occurs with the binding of one molecule of dopamine, one chloride ion, and two sodium ions to the transporter the transporter then translocates from the outside of the neuronal membrane into the inside of the neuron.22 Cocaine appears to bind to the sodium ion binding site. This changes the conformation of the chloride ion binding site thus dopamine transport does not occur. This blockade of dopamine transport potentiates dopaminergic neurotransmission and may be the basis for the rewarding effects of cocaine. Figure 1.1 The dopamine transporter terminates the action of released dopamine by transport back into the presynaptic neuron. Dopamine transport occurs with the binding of one molecule of dopamine, one chloride ion, and two sodium ions to the transporter the transporter then translocates from the outside of the neuronal membrane into the inside of the neuron.22 Cocaine appears to bind to the sodium ion binding site. This changes the conformation of the chloride ion binding site thus dopamine transport does not occur. This blockade of dopamine transport potentiates dopaminergic neurotransmission and may be the basis for the rewarding effects of cocaine.
Host-guest systems made from dendritic materials have potential in the areas of membrane transport and drug delivery [68, 84, 85]. In a recent report [136] Tomalia and coworkers investigated structural aspects of a series of PAM AM bolaamphiphiles (e.g., 50) with a hydrophobic diamino do decane core unit. Fluorescence emission of added dye (nile red) was significantly enhanced in an aqueous medium in the presence of 50 unlike the cases when 51 and 52 were added (Fig. 23). Addition of anion surfactants to this mixture generated supramolecular assemblies which enhanced their ability (ca.by 10-fold) to accommodate nile red (53). Further increase in emission was noted by decreasing the pH from the normal value of 11 for PAMAM dendrimers to 7. At lower pH values the... [Pg.57]

Keywords Dual-wavelength ratiometry Electrochromism Ion-transporting membrane proteins Membrane dipole potential Phototoxicity... [Pg.331]

In a second approach, Sugano et al. [138] tried to consider paracellular transport in addition to transcellular permeation. The prediction of the paracellular transport potential was based on size and charge parameters together with artificial membrane permeability in relation to known human absorption values. Other groups have focused on the paracellular route by modification of the assay [26],... [Pg.190]

EXAFS studies on tris-maltolatoiron(III) in the solid state and in solution, and on [Fe(Ll)3] hydrate, pave the way for detailed investigation of the hydration of complexes of this type in aqueous media.Solubilities and transfer chemical potentials have been determined for tris-maltolatoiron(III) in methanol-water, and for tris-etiwlmaltolatoiron(III) in alcohol-water mixtures and in isobutanol, 1-hexanol, and 1-octanol. Solubility maxima in mixed solvents, indicating synergic solvation, is relevant to trans-membrane transport of complexes of this type. Solubilities of tris-ethylmaltolatoiron(III) and of [Fe(Ll)3] have been determined in aqueous salt solutions (alkali halides NH4 and NR4 bromides). ... [Pg.503]

The behavior of an ion type is described quantitatively by the Nernst equation (3). A /g is the membrane potential (in volts, V) at which there is no net transport of the ion concerned across the membrane (equilibrium potential). The factor RT/Fn has a value of 0.026 V for monovalent ions at 25 °C. Thus, for K, the table (2) gives an equilibrium potential of ca. -0.09 V—i. e., a value more or less the same as that of the resting potential. By contrast, for Na ions, A /g is much higher than the resting potential, at +0.07 V. Na" ions therefore immediately flow into the cell when Na channels open (see p. 350). The disequilibrium between Na" and IC ions is... [Pg.126]

Polar Cell Systems for Membrane Transport Studies Direct current electrical measurement in epithelia steady-state and transient analysis, 171, 607 impedance analysis in tight epithelia, 171, 628 electrical impedance analysis of leaky epithelia theory, techniques, and leak artifact problems, 171, 642 patch-clamp experiments in epithelia activation by hormones or neurotransmitters, 171, 663 ionic permeation mechanisms in epithelia biionic potentials, dilution potentials, conductances, and streaming potentials, 171, 678 use of ionophores in epithelia characterizing membrane properties, 171, 715 cultures as epithelial models porous-bottom culture dishes for studying transport and differentiation, 171, 736 volume regulation in epithelia experimental approaches, 171, 744 scanning electrode localization of transport pathways in epithelial tissues, 171, 792. [Pg.450]

More generally, one-electron oxidation of protein-bound phenols to form reactive ary-loxyl radicals is a possible pro-oxidant mechanism since these radicals can propagate H-atom or electron transfers within the protein. In addition to phenol protein covalent coupling, these phenol-mediated oxidative damages to proteins could be detrimental to their function as enzymes, receptors, and membrane transporters. For instance, investigations by capillary electrophoresis have shown that quercetin in concentrations lower than 25 pM potentiates HSA degradation by AAPH-derived peroxyl radicals. [Pg.463]

Besides the examples listed above, there are numerous exploratory association studies that have identified many potential polymorphism biomarkers for treatment response in membrane transporter, drug-metabolizing enzyme, and drug target genes. The methodology and statistical analysis for the candidate gene approach are simple the results are easy to interpret. [Pg.358]

Unlike transport across the membranes of the ER, transport across plasma membranes of bacteria often requires both hydrolysis of ATP and energy provided by the membrane electrical potential.33 38 44-48 Secretion into the periplasmic space has been well characterized but less is known about transport of proteins into the external membranes of E. coli48 A16 kDa periplasmic chaperone may be required.483... [Pg.520]

Levitt, D.G. (2002) The use of Streaming Potential Measurements to Characterize Biological Ion Channels. Membrane Transport and Renal Physiology, 53-63, Springer, New York. [Pg.124]


See other pages where Membrane transport potential is mentioned: [Pg.166]    [Pg.65]    [Pg.701]    [Pg.139]    [Pg.391]    [Pg.115]    [Pg.193]    [Pg.490]    [Pg.75]    [Pg.95]    [Pg.314]    [Pg.319]    [Pg.97]    [Pg.64]    [Pg.351]    [Pg.58]    [Pg.86]    [Pg.97]    [Pg.293]    [Pg.63]    [Pg.177]    [Pg.310]    [Pg.2]    [Pg.450]    [Pg.258]    [Pg.117]    [Pg.273]    [Pg.578]    [Pg.114]    [Pg.142]    [Pg.397]   
See also in sourсe #XX -- [ Pg.331 ]




SEARCH



Electron Transport Creates an Electrochemical Potential Gradient for Protons across the Inner Membrane

Membrane potential

Membrane potentials transport systems

© 2024 chempedia.info