Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Membrane transition temperature

The porous electrodes in PEFCs are bonded to the surface of the ion-exchange membranes which are 0.12- to 0.25-mm thick by pressure and at a temperature usually between the glass-transition temperature and the thermal degradation temperature of the membrane. These conditions provide the necessary environment to produce an intimate contact between the electrocatalyst and the membrane surface. The early PEFCs contained Nafton membranes and about 4 mg/cm of Pt black in both the cathode and anode. Such electrode/membrane combinations, using the appropriate current coUectors and supporting stmcture in PEFCs and water electrolysis ceUs, are capable of operating at pressures up to 20.7 MPa (3000 psi), differential pressures up to 3.5 MPa (500 psi), and current densities of 2000 m A/cm. ... [Pg.578]

Hydrated bilayers containing one or more lipid components are commonly employed as models for biological membranes. These model systems exhibit a multiplicity of structural phases that are not observed in biological membranes. In the state that is analogous to fluid biological membranes, the liquid crystal or La bilayer phase present above the main bilayer phase transition temperature, Ta, the lipid hydrocarbon chains are conforma-tionally disordered and fluid ( melted ), and the lipids diffuse in the plane of the bilayer. At temperatures well below Ta, hydrated bilayers exist in the gel, or Lp, state in which the mostly all-trans chains are collectively tilted and pack in a regular two-dimensional... [Pg.465]

FIGURE 9.12 All illustration of the gel-to-liquid crystalline phase transition, which occurs when a membrane is warmed through the transition temperature, T. Notice that the surface area must increase and the thickness must decrease as the membrane goes through a phase transition. The mobility of the lipid chains increases dramatically. [Pg.268]

The rate of catalysis of membrane bound enzymes (Plot B, Figure 1) is more greatly affected than soluble enzymes by lowering the temperature. This is due to the effect of low temperatures on the solidification of the membranes. Thus, an Arrhenius plot of the rate of a membrane-bound enzyme as a function of temperature often shows a discontinuity with a sharp break point (transition temperature) and loss of activity at the temperature where the membrane becomes a gel or more solid phase. [Pg.389]

Polymer Processing. Polymer films were cast in trimethylsilyl coated glass molds from membrane filtered 15% (w/v) methylene chloride or chloroform solutions. Transparent films were obtained which were dried to constant weight in high vacuum. Rectangular strips or round disks were cut from the films. For compression molding a Carver laboratory press equipped with thermostated, heated platens was used. Polymers were placed in a stainless steel mold and heated to 40 °C above their glass transition temperature. Then a load of 1-2 tons was applied for 5 min. [Pg.157]

The phase-transition temperature, 7 , and the width of transition, A7j/2, were operationally defined based on EPR data, as shown in Figure 10.6a. As a rule, in the presence of polar carotenoids the phase transition broadens and shifts to lower temperatures (Subczynski et al. 1993, Wisniewska et al. 2006). The effects on Tm are the strongest for dipolar carotenoids, significantly weaker for monopolar carotenoids, and negligible for nonpolar carotenoids. The effects decrease with the increase of membrane thickness. Additionally, the difference between dipolar and monopolar carotenoids decreases for thicker membranes (Subczynski and Wisniewska 1998, Wisniewska et al. 2006). These effects for lutein, P-cryptoxanthin, and P-carotene are illustrated in Figure 10.6b... [Pg.196]

Recently, due to increased interest in membrane raft domains, extensive attention has been paid to the cholesterol-dependent liquid-ordered phase in the membrane (Subczynski and Kusumi 2003). The pulse EPR spin-labeling DOT method detected two coexisting phases in the DMPC/cholesterol membranes the liquid-ordered and the liquid-disordered domains above the phase-transition temperature (Subczynski et al. 2007b). However, using the same method for DMPC/lutein (zeaxanthin) membranes, only the liquid-ordered-like phase was detected above the phase-transition temperature (Widomska, Wisniewska, and Subczynski, unpublished data). No significant differences were found in the effects of lutein and zeaxanthin on the lateral organization of lipid bilayer membranes. We can conclude that lutein and zeaxanthin—macular xanthophylls that parallel cholesterol in its function as a regulator of both membrane fluidity and hydrophobicity—cannot parallel the ability of cholesterol to induce liquid-ordered-disordered phase separation. [Pg.203]

Cholesterol s presence in liposome membranes has the effect of decreasing or even abolishing (at high cholesterol concentrations) the phase transition from the gel state to the fluid or liquid crystal state that occurs with increasing temperature. It also can modulate the permeability and fluidity of the associated membrane—increasing both parameters at temperatures below the phase transition point and decreasing both above the phase transition temperature. Most liposomal recipes include cholesterol as an integral component in membrane construction. [Pg.869]

In aqueous systems, membrane lipids may exist in a gel-like solid state or as a two-dimensional liquid. In the case of pure phospholipids, these states interconvert at a well-defined transition temperature, Tc, that increases with alkyl chain length and decreases with introduction of alkyl chain unsaturation. In cell membranes, which have marked heterogeneity in both the polar and nonpolar domains of the bilayer, this state is described as liquid disordered . The presence of sufficient sphingolipids, with... [Pg.23]

Polyion complex technique [40] is a unique method for immobilization of bilayer membranes with polymers. Water-insoluble complex is precipitated as the polyion complex when an aqueous solution of the charged bilayer membrane is mixed with a water solution of the counter charged polyelectrolyte. Stoichiometric ion pair formation is often found. Aging of the precipitate in a hot mixture kept above phase transition temperature of the bilayer membrane completes the ion exchange reaction [41], Chloroform solution of the polyion complex is washed by water several times to remove water soluble components [42]. [Pg.76]

The initial hydration rate v and the equilibrium hydration amount were obtained as parameters reflecting the hydration behavior of LB films (see Figure 8). Temperature dependencies of the hydration behavior (v0and W ) of 10 layers of DMPE (Tc = 49 °C) LB films are shown in Figure 9. Large W and v0 values were observed only around the phase transition temperature (7C) of DMPE membranes. Thus, DMPE LB films were hydrated only near the Tc, but not in the solid state below the Tc and in the fluid state above the Tc. This indicates that the... [Pg.136]

From the modelling results for bilayers composed of unsaturated lipids one can begin to speculate about the various roles unsaturated lipids play in biomembranes. One very well-known effect is that unsaturated bonds suppress the gel-to-liquid phase transition temperature. Unsaturated lipids also modulate the lateral mobility of molecules in the membrane matrix. The results discussed above suggest that in biomembranes the average interpenetration depth of lipid tails into opposite monolayers can be tuned by using unsaturated lipids. Rabinovich and co-workers have shown that the end-to-end distance of multiple unsaturated acyl chains was significantly less sensitive to the temperature than that of saturated acyls. They suggested from this that unsaturated... [Pg.73]


See other pages where Membrane transition temperature is mentioned: [Pg.316]    [Pg.306]    [Pg.316]    [Pg.306]    [Pg.579]    [Pg.539]    [Pg.155]    [Pg.53]    [Pg.387]    [Pg.388]    [Pg.118]    [Pg.119]    [Pg.798]    [Pg.422]    [Pg.15]    [Pg.597]    [Pg.808]    [Pg.814]    [Pg.826]    [Pg.33]    [Pg.35]    [Pg.427]    [Pg.23]    [Pg.26]    [Pg.192]    [Pg.196]    [Pg.196]    [Pg.204]    [Pg.115]    [Pg.312]    [Pg.102]    [Pg.129]    [Pg.130]    [Pg.67]    [Pg.112]    [Pg.27]    [Pg.227]    [Pg.236]    [Pg.263]    [Pg.648]   
See also in sourсe #XX -- [ Pg.122 ]

See also in sourсe #XX -- [ Pg.173 ]




SEARCH



Membrane temperature

© 2024 chempedia.info