Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Membrane reactor modeling

Membrane reactor models of various configurations, complexity, and ranges of applicability have been previously reported [Sun and Khang, 1988 Itoh and Govind, 1989 Liu et al., 1990], Several previous investigators have presented water-gas shift membrane reactor models. A model of the iron-chromium oxide catalyzed water-gas shift reaction at 673 K in a cylindrical, palladium membrane reactor was developed to demonstrate... [Pg.103]

As mentioned earlier, most membrane reactor models are based on isothermal macroscopic balances in the axial direction and do not solve the transport equations for the membrane/support matrix. They all account for the effects of membrane permeation through the use of some common relevant parameters (as a permeation term) in the transport equations for both the feed and permeate sides. Those parameters are to be determined experimentally. The above approach, of course, is feasible only when the membrane (or membrane/support) is not catalytic. [Pg.425]

By "inert it means that the membrane is a separator but not a catalyst. Many membrane reactor modeling studies consider only those cases where the membrane is catalydcally inert and the catalyst is packed most often in the tubular (feed) region but sometimes in the annular (permeate) region. When it is assumed that no reaction takes place in the membrane or membrane/support matrix, the governing equations for the membrane/support matrix are usually eliminated. The overall eff ect of membrane permeation can be accounted for by a permeation term which appears in the macroscopic balance equations for both the feed and permeate sides. Thus, the diffusional gradient term... [Pg.428]

Using a developed plug-flow membrane reactor model with the catalyst packed on the tube side, Mohan and Govind [1986] studied cyclohexane dehydrogenation. They concluded that, for a fixed length of the membrane reactor, the maximum conversion occurs at an optimum ratio of the permeation rate to the reaction rate. This effect will be discussed in more detail in Chapter 11. They also found that, as expected, a membrane with a highly permselective membrane for the product(s) over the reactant(s) results in a high conversion. [Pg.443]

Mohan and Govind [1988c] applied their isothermal packed-bed porous membrane reactor model to the same equilibrium-limited reaction and found that the reactor conversion easily exceeds the equilibrium value. The HI conversion ratio (reactor conversion to equilibrium conversion) exhibits a maximum as a function of the ratio of the permeation rate to the reaction rate. This trend, which also occurs with other reactions such as cyclohexane dehydrogenation and propylene disproportionation, is the result of significant loss of reactant due to increased permeation rate. This loss of reactant eventually negates the equilibrium displacement and consequently the conversion enhancement effects. [Pg.444]


See other pages where Membrane reactor modeling is mentioned: [Pg.97]    [Pg.104]    [Pg.104]    [Pg.411]    [Pg.411]    [Pg.413]    [Pg.415]    [Pg.417]    [Pg.419]    [Pg.421]    [Pg.421]    [Pg.421]    [Pg.423]    [Pg.425]    [Pg.427]    [Pg.429]    [Pg.431]    [Pg.433]    [Pg.435]    [Pg.437]    [Pg.439]    [Pg.443]    [Pg.445]    [Pg.447]    [Pg.449]    [Pg.451]    [Pg.453]    [Pg.455]    [Pg.457]    [Pg.458]    [Pg.459]    [Pg.461]    [Pg.461]    [Pg.463]    [Pg.465]    [Pg.467]    [Pg.469]    [Pg.471]    [Pg.473]    [Pg.475]    [Pg.477]    [Pg.479]    [Pg.481]    [Pg.483]   
See also in sourсe #XX -- [ Pg.217 , Pg.221 ]




SEARCH



Hybrid modelling membrane reactors

Hydrogen-selective membrane reactor modelling

Membrane Reactor Experiments and Modeling

Membrane model

Membrane modeling

Membranes modelling

Model membrane reactor configuration

Model pervaporation membrane reactor

Model plug flow membrane reactor

Modeling of Fluidized Bed Membrane . Reactors

Modelling of Membrane Reactors

Modelling of Pervaporation Membrane Reactors

One-dimensional Modeling of Packed-bed Membrane Reactors

Other Modelling Aspects of Catalytic Membrane Reactors

Palladium membrane reactors model

Polymeric catalytic membrane reactors modelling

Three-dimensional Modeling of a Packed-bed Membrane Reactor

Two-dimensional Modeling of Packed-bed Membrane Reactors

Zeolite membrane reactors modelling

© 2024 chempedia.info