Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Membrane processes electron transfer

Both PSI and PSII are necessary for photosynthesis, but the systems do not operate in the implied temporal sequence. There is also considerable pooling of electrons in intermediates between the two photosystems, and the indicated photoacts seldom occur in unison. The terms PSI and PSII have come to represent two distinct, but interacting reaction centers in photosynthetic membranes (36,37) the two centers are considered in combination with the proteins and electron-transfer processes specific to the separate centers. [Pg.39]

The explicit mathematical treatment for such stationary-state situations at certain ion-selective membranes was performed by Iljuschenko and Mirkin 106). As the publication is in Russian and in a not widely distributed journal, their work will be cited in the appendix. The authors obtain an equation (s. (34) on page 28) similar to the one developed by Eisenman et al. 6) for glass membranes using the three-segment potential approach. However, the mobilities used in the stationary-state treatment are those which describe the ion migration in an electric field through a diffusion layer at the phase boundary. A diffusion process through the entire membrane with constant ion mobilities does not have to be assumed. The non-Nernstian behavior of extremely thin layers (i.e., ISFET) can therefore also be described, as well as the role of an electron transfer at solid-state membranes. [Pg.236]

In this chapter, a novel interpretation of the membrane transport process elucidated based on a voltammetric concept and method is presented, and the important role of charge transfer reactions at aqueous-membrane interfaces in the membrane transport is emphasized [10,17,18]. Then, three respiration mimetic charge (ion or electron) transfer reactions observed by the present authors at the interface between an aqueous solution and an organic solution in the absence of any enzymes or proteins are introduced, and selective ion transfer reactions coupled with the electron transfer reactions are discussed [19-23]. The reaction processes of the charge transfer reactions and the energetic relations... [Pg.489]

P. Mitchell (Nobel Prize for Chemistry, 1978) explained these facts by his chemiosmotic theory. This theory is based on the ordering of successive oxidation processes into reaction sequences called loops. Each loop consists of two basic processes, one of which is oriented in the direction away from the matrix surface of the internal membrane into the intracristal space and connected with the transfer of electrons together with protons. The second process is oriented in the opposite direction and is connected with the transfer of electrons alone. Figure 6.27 depicts the first Mitchell loop, whose first step involves reduction of NAD+ (the oxidized form of nicotinamide adenosine dinucleotide) by the carbonaceous substrate, SH2. In this process, two electrons and two protons are transferred from the matrix space. The protons are accumulated in the intracristal space, while electrons are transferred in the opposite direction by the reduction of the oxidized form of the Fe-S protein. This reduces a further component of the electron transport chain on the matrix side of the membrane and the process is repeated. The final process is the reduction of molecular oxygen with the reduced form of cytochrome oxidase. It would appear that this reaction sequence includes not only loops but also a proton pump, i.e. an enzymatic system that can employ the energy of the redox step in the electron transfer chain for translocation of protons from the matrix space into the intracristal space. [Pg.477]

An electron transfer type of enzyme sensor was thus fabricated by a electrochemical process. Although no appreciable leakage of ADH and MB from the membrane matrix was detected, NAD leaked slightly. To prevent this leakage, the ADH-MB-NAD/polypyrrole electrode was coated with Nation. A calibration curve is presented in Fig.25 for ethanol determination in an aquous solution with the enzyme sensor. Ethanol is selectively and sensitively determined in the concentration range from 0.1 nM to 10 mM. [Pg.353]

The several theoretical and/or simulation methods developed for modelling the solvation phenomena can be applied to the treatment of solvent effects on chemical reactivity. A variety of systems - ranging from small molecules to very large ones, such as biomolecules [236-238], biological membranes [239] and polymers [240] -and problems - mechanism of organic reactions [25, 79, 223, 241-247], chemical reactions in supercritical fluids [216, 248-250], ultrafast spectroscopy [251-255], electrochemical processes [256, 257], proton transfer [74, 75, 231], electron transfer [76, 77, 104, 258-261], charge transfer reactions and complexes [262-264], molecular and ionic spectra and excited states [24, 265-268], solvent-induced polarizability [221, 269], reaction dynamics [28, 78, 270-276], isomerization [110, 277-279], tautomeric equilibrium [280-282], conformational changes [283], dissociation reactions [199, 200, 227], stability [284] - have been treated by these techniques. Some of these... [Pg.339]

NADH-coenzyme Q (CoQ) oxidoreductase, transfers electrons stepwise from NADH, through a flavoprotein (containing FMN as cofactor) to a series of iron-sulfur clusters (which will be discussed in Chapter 13) and ultimately to CoQ, a lipid-soluble quinone, which transfers its electrons to Complex III. A If, for the couple NADH/CoQ is 0.36 V, corresponding to a AG° of —69.5 kJ/mol and in the process of electron transfer, protons are exported into the intermembrane space (between the mitochondrial inner and outer membranes). [Pg.99]


See other pages where Membrane processes electron transfer is mentioned: [Pg.221]    [Pg.430]    [Pg.453]    [Pg.1055]    [Pg.1054]    [Pg.298]    [Pg.529]    [Pg.2817]    [Pg.39]    [Pg.40]    [Pg.44]    [Pg.385]    [Pg.261]    [Pg.640]    [Pg.689]    [Pg.691]    [Pg.727]    [Pg.113]    [Pg.284]    [Pg.585]    [Pg.106]    [Pg.86]    [Pg.640]    [Pg.641]    [Pg.233]    [Pg.379]    [Pg.480]    [Pg.53]    [Pg.115]    [Pg.245]    [Pg.303]    [Pg.259]    [Pg.264]    [Pg.9]    [Pg.68]    [Pg.329]    [Pg.226]    [Pg.110]    [Pg.215]    [Pg.86]    [Pg.135]    [Pg.3]   
See also in sourсe #XX -- [ Pg.171 ]

See also in sourсe #XX -- [ Pg.171 ]




SEARCH



Electron membrane

Electron processes

Electron-transfer processes

Electronic processes

Membrane process

Membrane processing

Membranes transfer processes

© 2024 chempedia.info