Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nervous membrane

Taste-active chemicals react with receptors on the surface of sensory cells in the papillae causing electrical depolarization, ie, drop in the voltage across the sensory cell membrane. The collection of biochemical events that are involved in this process is called transduction (15,16). Not all the chemical steps involved in transduction are known however, it is clear that different transduction mechanisms are involved in different taste quaUties different transduction mechanisms exist for the same chemical in different species (15). Thus the specificity of chemosensory processes, ie, taste and smell, to different chemicals is caused by differences in the sensory cell membrane, the transduction mechanisms, and the central nervous system (14). [Pg.10]

Arsenic compounds must be considered extremely poisonous. Dust or fumes irritate mucous membranes and lead to arsenical poisoning. When swallowed they irritate the stomach and affect the heart, Hver, and kidneys. Nervousness, thirst, vomiting, diarrhea, cyanosis, and coUapse are among the symptoms of arsenical poisoning (3). In spite of the toxicity of arsenic compounds, there is evidence that arsenic is an essential nutrient for several animal species (4). [Pg.332]

AH four butanols are thought to have a generaHy low order of human toxicity (32). However, large dosages of the butanols generaHy serve as central nervous system depressants and mucous membrane irritants. Animal toxicity and irritancy data (32) are given in Table 4. [Pg.358]

Toxicity of 2-Ghloroethanol. Ethylene chlorohydrin is an irritant and is toxic to the Hver, kidneys, and central nervous system. In addition, it is rapidly absorbed through the skin (73). The vapor is not sufficiently irritating to the eyes and respiratory mucous membranes to prevent serious systemic poisoning. Contact of the Hquid in the eyes of rabbits causes moderately severe injury, but in humans corneal bums have been known to heal within 48 hours. Several human fataUties have resulted from inhalation, dermal contact, or ingestion. One fatahty was caused by exposure to an estimated 300 ppm in air for 2.25 hours. In another fatal case, autopsy revealed pulmonary edema and damage to the Hver, kidneys, and brain (73). [Pg.75]

Inhalation is the most common means by which ethers enter the body. The effects of various ethers may include narcosis, irritation of the nose, throat, and mucous membranes, and chronic or acute poisoning. In general, ethers are central nervous system depressants, eg, ethyl ether and vinyl ether are used as general anesthetics. [Pg.427]

Health Hazards Information - Recommended Personal Protective Equipment Protective goggles, gloves Symptoms Following Exposure Irritation of mucous membranes and stimulation followed by depression of central nervous system. Breathing of vapor may also cause dizziness, headache, and in... [Pg.188]

Adrenaline (epinephrine) is a catecholamine, which is released as a neurotransmitter from neurons in the central nervous system and as a hormone from chromaffin cells of the adrenal gland. Adrenaline is required for increased metabolic and cardiovascular demand during stress. Its cellular actions are mediated via plasma membrane bound G-protein-coupled receptors. [Pg.42]

AQP4 is the predominant water channel in the central nervous system (CNS), where it is involved in maintaining brain water balance and neural signal transduction. It is mainly expressed in astroglial cells, which support the neurons. Outside the CNS, AQP4 has been found in the basolateral membrane of renal principal cells as well as in various glandular epithelia, airways, skeletal muscle, stomach, retina and ear. [Pg.216]

Although blood pressure control follows Ohm s law and seems to be simple, it underlies a complex circuit of interrelated systems. Hence, numerous physiologic systems that have pleiotropic effects and interact in complex fashion have been found to modulate blood pressure. Because of their number and complexity it is beyond the scope of the current account to cover all mechanisms and feedback circuits involved in blood pressure control. Rather, an overview of the clinically most relevant ones is presented. These systems include the heart, the blood vessels, the extracellular volume, the kidneys, the nervous system, a variety of humoral factors, and molecular events at the cellular level. They are intertwined to maintain adequate tissue perfusion and nutrition. Normal blood pressure control can be related to cardiac output and the total peripheral resistance. The stroke volume and the heart rate determine cardiac output. Each cycle of cardiac contraction propels a bolus of about 70 ml blood into the systemic arterial system. As one example of the interaction of these multiple systems, the stroke volume is dependent in part on intravascular volume regulated by the kidneys as well as on myocardial contractility. The latter is, in turn, a complex function involving sympathetic and parasympathetic control of heart rate intrinsic activity of the cardiac conduction system complex membrane transport and cellular events requiring influx of calcium, which lead to myocardial fibre shortening and relaxation and affects the humoral substances (e.g., catecholamines) in stimulation heart rate and myocardial fibre tension. [Pg.273]

The regulation of the total peripheral resistance also involves the complex interactions of several mechanisms. These include baroreflexes and sympathetic nervous system activity response to neurohumoral substances and endothelial factors myogenic adjustments at the cellular level, some mediated by ion channels and events at the cellular membrane and intercellular events mediated by receptors and mechanisms for signal transduction. As examples of some of these mechanisms, there are two major neural reflex arcs (Fig. 1). Baroreflexes are derived from high-pressure barorecep-tors in the aortic arch and carotid sinus and low-pressure cardiopulmonary baroreceptors in ventricles and atria. These receptors respond to stretch (high pressure) or... [Pg.273]

Within the nervous system, ChEs were shown to be involved in membrane conductance and transmission of excitatory amino acids, learning and memory, neurite growth, neuritic translocation and acute stress reactions. Recent findings propose AChE s involvement in apoptosome formation [2]. [Pg.358]

C1C-6 and C1C-7 define the third branch of the CLC family. These proteins are only about 45% identical to each other. Whereas CLC-7 is very broadly expressed, the CLC-6 protein seems to be restricted to the nervous system. It proved impossible to obtain plasma membrane chloride currents with either C1C-6 or C1C-7. This is due to the fact that both channels reside in intracellular organelles under most circumstances. Based on structural features, it appeals likely that they also mediate CF/H + exchange. [Pg.372]

Ephrins are a group of membranous ligands, which function through a family of receptor tyrosine kinases (Ephs). Ephrin/Eph-mediated signaling processes are involved in morphogenetic processes taking place e.g. during the development of the nervous system or the vasculature. [Pg.478]

NHE5. The distribution of this isoform is distinct, being in neuronal-rich areas of the central nervous system. Low levels have also been found in testis, spleen and skeletal muscle. Like the preceding isoforms, NHE5 is found in the plasma membrane and is internalised by clathrin-associated endocytosis into recycling endosomes. The normal role of NHE5 is unknown but its malfunction is speculated to contribute to the development of neurodegenerative disease. [Pg.811]

Prostaglandins are a group of lipid autacoids known as eicosanoids. They are produced from membrane phospholipids and found in almost every tissue and body fluid. They are involved in a number of physiological processes including inflammation, smooth muscle tone and gastrointestinal secretion. In the central nervous system they have been reported to produce both excitation and inhibition of neuronal activity. [Pg.1000]

Methanol is a dangerous fire hazard when exposed to heat or flame, and a moderate expl hazard when exposed to flame. It is a dangerous disaster hazard upon exposure to heat or flame, and can react vigorously with oxidizing materials. Methanol possesses distinct narcotic props, and is also a slight irritant to the mucous membranes. Its main toxic effect is exerted upon the nervous system, particularly the optic nerves and possibly the retinae. In the body the products formed by its oxidn are formaldehyde and formic acid, both of which are toxic. Because of the slowness with which it is eliminated, methanol should be regarded as a cumulative poison (Ref 5)... [Pg.107]

Rgure 22-2. Neurotransmission in the central nervous system. Neurotransmitter molecules (eg, norepinephrine), released by the presynaptic nerve, cross the synapse and bind with receptors in the cell membrane of the postsynaptic nerve, resulting in the transmission of the nerve impulse. [Pg.200]


See other pages where Nervous membrane is mentioned: [Pg.2817]    [Pg.406]    [Pg.468]    [Pg.108]    [Pg.375]    [Pg.218]    [Pg.188]    [Pg.136]    [Pg.149]    [Pg.26]    [Pg.51]    [Pg.113]    [Pg.189]    [Pg.190]    [Pg.191]    [Pg.261]    [Pg.263]    [Pg.291]    [Pg.305]    [Pg.249]    [Pg.560]    [Pg.760]    [Pg.37]    [Pg.206]    [Pg.252]    [Pg.464]    [Pg.573]    [Pg.701]    [Pg.822]    [Pg.855]    [Pg.986]    [Pg.1243]    [Pg.213]    [Pg.654]   
See also in sourсe #XX -- [ Pg.13 ]




SEARCH



Excitation of the Nervous Membrane Hodgkin-Huxley Equations

© 2024 chempedia.info