Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Melting impurities, effect

AIChESymp. Ser. (a) 65 (1969) no. 95, Crystallization from solutions and melts (b) 67 (1971) no. 110, Factors affecting size distribution (c) 68 (1972) no. 121, Crystallization from solutions Nucleation phenomena in growing crystal systems (d) 72 (1976) no. 153, Analysis and design of crystallisation processes (e) 76 (1980) no. 193, Design, control and analysis of crystallisation processes (f) 78 (1982) no. 215, Nucleation, growth and impurity effects in crystallisation process engineering (g) 80 (1984) no. 240, Advances in crystallisation from solutions. [Pg.893]

Irradiation of lower molecular weight samples in the fluid N phase at 313 or 366 nm led to an unusual result [21]. In the first few seconds of irradiation the perturbed spectrum of the N phase exhibited hyperchromism (an increase in absorbance) and its shape became similar to that of the spectrum of the isotropic melt. This effect is also observed upon triplet sensitization which, like 366-nm irradiation, suppresses photo-Fries rearrangement [28]. It has not yet been proved that this effect is accompanied by a phase change from N to I induced by photoproducts essentially acting as impurities in the mesophase. The effect could be at the microscopic level where formation of a cyclobutane dimer or other photoproduct could interrupt H-type aggregated chromophore stacks, or confor-... [Pg.140]

Increasing solubility because of increased concentration of impurities will result in a similar equilibrium change, although in some cases, the effect could be much greater. In extreme cases, when the residual solvent concentration is reduced to less than a critical value, the substrate could melt or solidify, depending on the melting point and the impurity effect. This condition is often used in laboratory preparations for convenience in changing solvents and is referred to as concentration to dryness. It is obviously not a scalable operation in a stirred vessel. Specialized tubular evaporators with close-clearance or scraped-surface rotors are available for these applications and have been successfully used by the authors for concentration but not for simultaneous crystallization. [Pg.169]

The achieved purity is quite often plotted in diagrams as an effective distribution coefficient. The effective distribution coefficient has been defined by Burton et al. (1953) and Wintermantel (1986) as the ratio of the impurity content in the crystals to the impurity content in the feed melt. Impurities can be incorporated in crystals or crystal layers as a result of a kinetic process. [Pg.163]

Corrosion reactions can occur by a simple dissolution mechanism, whereby the containment material dissolves in the melt without any impurity effects. Material dissolved in a hot zone may be redeposited in a colder area, possibly compounding the corrosion problem by additional plugging and blockages where deposition has taken place. Dissolution damage may be of a localized nature, for example, by selective dealloying. The second corrosion mechanism is one of reactions involving interstitial (or impurity) elements such as carbon or oxygen in the melt or containment material. Two further subforms are corrosion product formation and elemental transfer. In the former the liquid metal is directly involved in corrosion product formation. In the latter the liquid metal does not react directly with the containment alloy rather, interstitial elements are transferred to, from, or across the liquid. [Pg.709]

A detailed study on the wetting characteristics of eutectic Bi-Sn solder has been reported in terms of impurity effects, fluxes, base metals, and soldering temperature [18]. It was determined that eutectic Bi n solder is far less tolerant of impurities than eutectic Plr n [19]. In particular, the presence of impurity elements which form intermetallic compounds with Bi-Sn solder, such as Cu, Ni, Fe, and Pd, is especially critical, while Sb and Pb appear to be beneficial in terms of promoting wetting characteristics. Table 1 compares the solderabihty of several low-melting-point solders on various surface metallizations [20]. Only the Au/Ni-plated metallization is considered acceptable for Bi n solder, while the Cu, Ni, and Au/Ni metallizations are all acceptable for eutectic Sn Pb solder when a rosin-base flux is used. Another study confirmed that Bi Sn solder does not wet Cu-base metallizations as well as eutectic Sn-Pb solder does when a rosin-base flux is used [21]. However, if the Cu surface is pre-tirmed, then Bi-Sn wetting is acceptable even with a rosin-base flux [22]. Based on the wettabihty studies, eutectic Bi-Sn solder can only be considered a viable candidate if a suitable flux system is developed which allows it to be utilized for metallizations other than a Au/Ni overplate. [Pg.283]

The most direct effect of defects on tire properties of a material usually derive from altered ionic conductivity and diffusion properties. So-called superionic conductors materials which have an ionic conductivity comparable to that of molten salts. This h conductivity is due to the presence of defects, which can be introduced thermally or the presence of impurities. Diffusion affects important processes such as corrosion z catalysis. The specific heat capacity is also affected near the melting temperature the h capacity of a defective material is higher than for the equivalent ideal crystal. This refle the fact that the creation of defects is enthalpically unfavourable but is more than comp sated for by the increase in entropy, so leading to an overall decrease in the free energy... [Pg.639]

Effect of impurities upon the melting point. Let us take a specific example and examine the effect of the addition of a small quantity of naphthalene to an equilibrium mixture of pure solid and liquid a-naphthol at the temperature of the true melting point (95 5°) at atmospheric pressure. [Pg.23]

The zinc is normally melted in a gas, oU, or coal-fired reverberatory furnace with a capacity up to 100 tons or in a low frequency induction furnace with a capacity of a few tons. The more highly aUoyed compositions are more effectively melted and mixed in low frequency induction furnaces. The furnace must be refractory-lined to eliminate iron pickup by the molten metal. The metal temperature is maintained below 500°C to minimize loss by oxidation. A ladle is used to transfer the metal for casting into molds the pouring temperature is usuaUy ca 440°C. Zinc scrap is not generaUy suitable for remelting because it may contain undesirable impurities. [Pg.414]

Electron-beam melting of zirconium has been used to remove the more volatile impurities such as iron, but the relatively high volatiUty of zirconium precludes effective purification. Electrorefining is fused-salt baths (77,78) and purification by d-c electrotransport (79) have been demonstrated but are not in commercial use. [Pg.431]

The infrared spectmm of caprolactam has been given (3). Melting point data for the caprolactam—water system, as shown in Eigute 1, ate indicative of successful purification of caprolactam by crystallization from aqueous solution such purification is very effective for separating and rejecting polar impurities. [Pg.428]

Although some changes occur in the melting furnace, cathode impurities are usually reflected directly in the final quaUty of electrorefined copper. It is commonly accepted that armealabiUty of copper is unfavorably affected by teUurium, selenium, bismuth, antimony, and arsenic, in decreasing order of adverse effect. Silver in cathodes represents a nonrecoverable loss of silver to the refiner. If the copper content of electrolyte is maintained at the normal level of 40—50 g/L, and the appropriate ratio of arsenic to antimony and bismuth (29) is present, these elements do not codeposit on the cathode. [Pg.203]

Performance information for the purification of p-xylene indicates that nearly 100 percent of the ciystals in the feed stream are removed as produc t. This suggests that the liquid which is refluxed from the melting section is effectively refrozen oy the countercurrent stream of subcooled crystals. A high-meltingproduct of 99.0 to 99.8 weight percent p-xylene has been obtained from a 65 weight percent p-xyfene feed. The major impurity was m-xylene. Figure 22-12 illustrates the column-cross-section-area-capacity relationship for various product purities. [Pg.1995]

Electrochemical corrosion of metals Since the aggressiveness of salt melts is governed by redox equilibria, and is often controlled by composition of the external atmosphere, effects analogous to electrochemical or oxygen-concentration corrosion in aqueous systems can occur in salt melts. Tomashov and Tugarinov determined cathodic polarisation curves in fused chlorides and concluded that the cathodic reactions of impurities could be represented as ... [Pg.439]

Mass-transfer deposits can lead to blockages in non-isothermal circulating systems, cis in the case of liquid-metal corrosion. In fused salts, the effect can be reduced by keeping contamination of the melt by metal ions to a minimum e.g. by eliminating oxidising impurities or by maintaining reducing conditions over the melt . [Pg.440]

Maraging steels have been produced both by air and vacuum melting. Small amounts of impurities can decrease toughness significantly, sulphur in particular is detrimental and should be kept as low as possible. Silicon and manganese also have a detrimental effect on toughness and should be maintained below a combined level of 0-20%. Such elements as C, P, Bi, O2, Nj and Hj are kept at the lowest levels practicable. [Pg.564]


See other pages where Melting impurities, effect is mentioned: [Pg.241]    [Pg.272]    [Pg.873]    [Pg.231]    [Pg.294]    [Pg.68]    [Pg.278]    [Pg.68]    [Pg.94]    [Pg.103]    [Pg.404]    [Pg.148]    [Pg.221]    [Pg.195]    [Pg.390]    [Pg.318]    [Pg.115]    [Pg.39]    [Pg.230]    [Pg.46]    [Pg.321]    [Pg.470]    [Pg.169]    [Pg.101]    [Pg.386]    [Pg.249]    [Pg.67]    [Pg.350]    [Pg.435]    [Pg.442]    [Pg.748]   
See also in sourсe #XX -- [ Pg.212 ]




SEARCH



Effect of impurities upon the melting point

Impurity effects

Melting point effect of impurities upon

© 2024 chempedia.info