Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Medicine chiral

Section 7 8 Both enantiomers of the same substance are identical m most of then-physical properties The most prominent differences are biological ones such as taste and odor m which the substance interacts with a chiral receptor site m a living system Enantiomers also have important conse quences m medicine m which the two enantiomeric forms of a drug can have much different effects on a patient... [Pg.316]

Technetium-99m coordination compounds are used very widely as noniavasive imaging tools (35) (see Imaging technology Radioactive tracers). Different coordination species concentrate ia different organs. Several of the [Tc O(chelate)2] types have been used. In fact, the large majority of nuclear medicine scans ia the United States are of technetium-99m complexes. Moreover, chiral transition-metal complexes have been used to probe nucleic acid stmcture (see Nucleic acids). For example, the two chiral isomers of tris(1,10-phenanthroline)mthenium (IT) [24162-09-2] (14) iateract differentiy with DNA. These compounds are enantioselective and provide an addition tool for DNA stmctural iaterpretation (36). [Pg.173]

Most of the molecules we take into our bodies, whethei in food or in medicine, are chiral. As a rule, differeni enantiomers of these molecules have different biologica consequences. [Pg.68]

Marazano and co-workers have used the Zincke reaction extensively to prepare chiral templates for elaboration to substituted piperidine and tetrahydropyridine natural products and medicinal agents. For example, 3-picoline was converted to Zincke salt 40 by reaction with 2,4-dinitrochlorobenzene in refluxing acetone, and treatment with R- -)-phenylglycinol in refluxing n-butanol generated the chiral pyridinium 77. Reduction to... [Pg.366]

Committee for Proprietary Medicinal Product (1993) Note for Guidance Investigation of Chiral Active Substances III/3501/91. [Pg.282]

Generic applications for chiral medicinal products should be supported by bioequivalence studies using enantiospecific bioanalytical methods unless both products contain the same, stable, single enantiomer or both products contain a racemate where both enantiomers show linear pharmacokinetics. [Pg.327]

The guideline concludes with a note that there is no intention to require further data on established medicinal products which contain a racemic drug unless new evidence emerges concerning the safety or efficacy of one enantiomer. If new claims related to the chiral nature of the active substance are made, then supporting studies on the individual enantiomers will be required. [Pg.327]

Fig. 13-2. Establishing procedures for chiral new drug substances and new medicinal products containing new chiral drug substances. Fig. 13-2. Establishing procedures for chiral new drug substances and new medicinal products containing new chiral drug substances.
A. G. Rauws, K. Groen, Current regulatory (draft) guidance on chiral medicinal products Canada, EEC, Japan, United States, Chirality, 1994, 6, 72-75. [Pg.341]

S)-a-substituted P-bromo-a-hydroxy acids (S)-4 are very important chiral synthon for medicinally important compounds, such as potential new hypoglycemia active alkylglycidic acids (ref. 1) and anti-ulcer active misoprost (ref. 2). [Pg.171]

This method is very simple and convenient, therefore it can be widely utilized to the synthesis of the medicinally important compounds which have this chiral synthon (ref. 7). [Pg.172]

In this decade, all chemistry research fields have adopted and/or applied the dendrimers and/or dendrimer methodologies. The table of contents of this series. Topics in Current Chemistry Dendrimers Volumes I-IV, clearly indicates this situation [1-4], that is, the concept of dendritic compounds has already been introduced in host-guest and/or supramolecular chemistry (Vol. I/Chap. 2, Vol. Il/Chaps. 3,4, Vol. IV/Chap. 3), chiral chemistry (Vol. I/Chap. 4), electrochemistry (Vol. I/Chap. 6, Vol. Ill/Chap. 3), heteroatom and/or organometalHc chemistries (Vol. I/Chap. 3, Vol. Il/Chaps. 2,5, and Vol. IV/Chap. 4), and carbohydrate chemistry (Vol. IV/Chap. 6), as well as applied in the field of medicine (Vol. Il/Chap. 6) and nanoscience (Vol. Ill/Chap. 4). The dendrimer methodology is expected to be used in future novel science as a conventional chemistry concept. [Pg.66]

Our approach for chiral resolution is quite systematic. Instead of randomly screening different chiral acids with racemic 7, optically pure N-pMB 19 was prepared from 2, provided to us from Medicinal Chemistry. With 19, several salts with both enantiomers of chiral acids were prepared for evaluation of their crystallinity and solubility in various solvent systems. This is a more systematic way to discover an efficient classical resolution. First, a (+)-camphorsulfonic acid salt of 19 crystallized from EtOAc. One month later, a diastereomeric (-)-camphorsulfonic acid salt of 19 also crystallized. After several investigations on the two diastereomeric crystalline salts, it was determined that racemic 7 could be resolved nicely with (+)-camphorsulfonic acid from n-BuOAc kinetically. In practice, by heating racemic 7 with 1.3equiv (+)-camphorsulfonic acid in n-BuOAc under reflux for 30 min then slowly cooling to room temperature, a cmde diastereomeric mixture of the salt (59% ee) was obtained as a first crop. The first crop was recrystallized from n-BuOAc providing 95% ee salt 20 in 43% isolated yield. (The optical purity was further improved to -100% ee by additional recrystallization from n-BuOAc and the overall crystallization yield was 41%). This chiral resolution method was more efficient and economical than the original bis-camphanyl amide method. [Pg.7]

Obviously, there are two ways to prepare Efavirenz from the pMB protected chiral amino alcohol 50 (i) creation of the benzoxazinone first then removal of the pMB group or (ii) removal of the pMB first then formation of benzoxazinone. Preparation of the benzoxazinone was demonstrated by Medicinal Chemistry from the amino-alcohol with CDI. [Pg.27]

The key structural features of compound 1 are the chiral cis-diaryl benzox-athiin fused ring system, two phenols, and one phenol ether linkage with the pyrrolidinylethanol. Originally, SERM 1 was prepared by medicinal chemists from a key ketone intermediate 5 shown in Scheme 5.1. Compound 5 was prepared in four steps with rather low yield [4a], Among these steps, the high temperature de-methylation step and the use of extremely toxic MOM-C1 were not particularly suitable for scale-up. The ketone 5 was then brominated with PhMe3NBr3 (PTAB) and coupled with thiophenol 7 to produce adduct 8. The key step of the synthesis was the conversion of adduct 8 to cis-diaryl benzoxathiin 9 under the Kursanov-Parne reaction conditions (TFA/Et3SiH). This novel reaction allowed the formation... [Pg.144]

The original medicinal chemistry synthesis of ether 18 involved reaction of alcohol 10 with racemic imidate 17 in the presence of a catalytic amount of TfOH and furnished an approximately 1.1 1 mixture of 18 19 (Scheme 7.3) [1], We thought it worthwhile to reinvestigate this reaction with chiral imidate 67 in an effort to explore the diastereoselectivity of the etherification. [Pg.206]

Zsila F, Simonyi M, and Lockwood SF. 2003. Interaction of the disodium disuccinate derivative of meso-astaxanthin with human serum albumin From chiral complexation to self-assembly. Bioorganic Medicinal Chemistry letters 13(22) 4093 4100. [Pg.58]

Achiral-chiral chromatography has also been accomplished using subcritical fluid chromatography (Phinney et al., 1998). In this work, the structurally related [3-blockers, 1,4-benzodiazepines, and two cold medicines were separated using methanol or ethanol modified carbon dioxide mobile phases. The (3-blockers were separated using cyanopropyl and Chiracel OD columns connected in series. Likewise, an amino bonded phase and Chiracel OD column were used for the separation of the 1,4-benzodiazepines. Guaifenesin and phenylpropanolamine from cough syrup were separated on cyanopropyl and Chiralpak AD columns in series. [Pg.338]


See other pages where Medicine chiral is mentioned: [Pg.1]    [Pg.1]    [Pg.181]    [Pg.119]    [Pg.195]    [Pg.66]    [Pg.321]    [Pg.321]    [Pg.321]    [Pg.323]    [Pg.323]    [Pg.323]    [Pg.327]    [Pg.338]    [Pg.51]    [Pg.300]    [Pg.395]    [Pg.455]    [Pg.192]    [Pg.817]    [Pg.330]    [Pg.330]    [Pg.330]    [Pg.332]    [Pg.332]    [Pg.332]    [Pg.336]    [Pg.347]   
See also in sourсe #XX -- [ Pg.193 ]




SEARCH



Medicine chiral drugs

Real Life Medicine 5-4 Chiral Drugs—Racemic or Enantiomerically Pure

© 2024 chempedia.info