Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldol reactions mechanisms

A probable mechanism of these base-catalysed aldol reactions may be written in gena-al terms as follows ... [Pg.711]

Stereoselectivities of 99% are also obtained by Mukaiyama type aldol reactions (cf. p. 58) of the titanium enolate of Masamune s chired a-silyloxy ketone with aldehydes. An excess of titanium reagent (s 2 mol) must be used to prevent interference by the lithium salt formed, when the titanium enolate is generated via the lithium enolate (C. Siegel, 1989). The mechanism and the stereochemistry are the same as with the boron enolate. [Pg.62]

The mechanism of the Feist-Benary reaction involves an aldol reaction followed by an intramolecular 0-alkylation and dehydration to yield the furan product. In the example below, ethyl acetoacetate (9) is deprotonated by the base (B) to yield anion 10 this carbanion reacts with chloroacetaldehyde (8) to furnish aldol adduct 11. Protonation of the alkoxide anion followed by deprotonation of the [i-dicarbonyl in 12 leads to... [Pg.160]

Chiral salen chromium and cobalt complexes have been shown by Jacobsen et al. to catalyze an enantioselective cycloaddition reaction of carbonyl compounds with dienes [22]. The cycloaddition reaction of different aldehydes 1 containing aromatic, aliphatic, and conjugated substituents with Danishefsky s diene 2a catalyzed by the chiral salen-chromium(III) complexes 14a,b proceeds in up to 98% yield and with moderate to high ee (Scheme 4.14). It was found that the presence of oven-dried powdered 4 A molecular sieves led to increased yield and enantioselectivity. The lowest ee (62% ee, catalyst 14b) was obtained for hexanal and the highest (93% ee, catalyst 14a) was obtained for cyclohexyl aldehyde. The mechanism of the cycloaddition reaction was investigated in terms of a traditional cycloaddition, or formation of the cycloaddition product via a Mukaiyama aldol-reaction path. In the presence of the chiral salen-chromium(III) catalyst system NMR spectroscopy of the crude reaction mixture of the reaction of benzaldehyde with Danishefsky s diene revealed the exclusive presence of the cycloaddition-pathway product. The Mukaiyama aldol condensation product was prepared independently and subjected to the conditions of the chiral salen-chromium(III)-catalyzed reactions. No detectable cycloaddition product could be observed. These results point towards a [2-i-4]-cydoaddition mechanism. [Pg.162]

The term Knoevenagel reaction however is used also for analogous reactions of aldehydes and ketones with various types of CH-acidic methylene compounds. The reaction belongs to a class of carbonyl reactions, that are related to the aldol reaction. The mechanism is formulated by analogy to the latter. The initial step is the deprotonation of the CH-acidic methylene compound 2. Organic bases like amines can be used for this purpose a catalytic amount of amine usually suffices. A common procedure, that uses pyridine as base as well as solvent, together with a catalytic amount of piperidine, is called the Doebner modification of the Knoevenagel reaction. [Pg.176]

The LLB catalysts requires at least 3.3 mol% of asymmehic catalyst for efficient nitro-aldol reactions, and the reactions are rather slow (first generation). Second-generation LLB catalysts are prepared by addition of 1 equiv of H2O and 0.9 equiv of n-BuLi. The second-generation-catalysts are more reactive than the first generation LLB as shown in Eq. 3.80. The proposed mechanism of asymmetiic niti o-aldol reaction using these catalysts is presented in Scheme 3.20. ... [Pg.61]

Scheme 3.20. Proposed mechanism of asymmetric nitro-aldol reactions catalyzed by LLB, LLB-II, or LLB-LI nitronate... Scheme 3.20. Proposed mechanism of asymmetric nitro-aldol reactions catalyzed by LLB, LLB-II, or LLB-LI nitronate...
Mechanism of the aldol reaction, a typical carbonyl condensation. [Pg.880]

The selectivity observed in the intramolecular aldol reaction of 2,5-hexanedione is due to the fact that all steps in the mechanism are reversible, so an... [Pg.887]

Tire mechanism of the Claisen condensation is similar to that of the aldol condensation and involves the nucleophilic addition of an ester enolate ion to the carbonyl group of a second ester molecule. The only difference between the aldol condensation of an aldeiwde or ketone and the Claisen condensation of an ester involves the fate of the initially formed tetrahedral intermediate. The tetrahedral intermediate in the aldol reaction is protonated to give an alcohol product—exactly the behavior previously seen for aldehydes and ketones (Section 19.4). The tetrahedral intermediate in the Claisen reaction, however, expels an alkoxide leaving group to yield an acyl substitution product—exactly the behavior previously seen for esters (Section 21.6). The mechanism of the Claisen condensation reaction is shown in Figure 23.5. [Pg.888]

The aldol reaction is catalyzed by acid as well as by base. What is the reactive nucleophile in the acid-catalyzed aldoJ reaction Propose a mechanism. [Pg.909]

The Stork enamine reaction and the intramolecular aldol reaction can be carried out in sequence to allow the synthesis of cyclohexenones. For example, reaction of the pyrrolidine enamine of cyclohexanone with 3-buten-2-one. followed by enamine hydrolysis and base treatment, yields the product indicated. Write each step, and show the mechanism of each. [Pg.912]

The following reaction involves an intramolecular Michael reaction followed by an intramolecular aldol reaction. Write both steps., and show their mechanisms. [Pg.914]

StepS 9-1° of F Sure 29-7 Dehydration and Dephosphorylation Like mos /3-hydroxy carbonyl compounds produced in aldol reactions, 2-phospho glvcerate undergoes a ready dehydration in step 9 by an ElcB mechanism (Section 23.3). The process is catalyzed by enolase, and the product i... [Pg.1149]

The product is a P-hydroxy aldehyde (called an aldol) or ketone, which in some cases is dehydrated during the course of the reaction. Even if the dehydration is not spontaneous, it can usually be done easily, since the new double bond is in conjugation with the C=0 bond so that this is a method of preparing a,P-unsaturated aldehydes and ketones as well as P-hydroxy aldehydes and ketones. The entire reaction is an equilibrium (including the dehydration step), and a,P-unsaturated and P-hydroxy aldehydes and ketones can be cleaved by treatment with OH (the retrograde aldol reaction). There is evidence that an SET mechanism can intervene when the substrate is an aromatic ketone. ... [Pg.1220]

Efforts were made by Garcia Gonzalez and his coworkers to elucidate the mechanism of this reaction. In one of the working hypotheses, it was considered that the aldehydo form of the sugar and the 1,3-dicarbonyl compound undergo an aldol reaction to yield a 2-C-(alditol-l-yl)-l,3-dicar-bonyl compound, which is then dehydrated to form the furan. This hypothesis was supported by the isolation of the aldol-addition product of... [Pg.13]

A full kinetic study of the proline-mediated aldol reaction based on a detailed catalytic reaction mechanism will be published separately. [Pg.448]

The values of x = 0.5 and = 1 for the kinetic orders in acetone [1] and aldehyde [2] are not trae kinetic orders for this reaction. Rather, these values represent the power-law compromise for a catalytic reaction with a more complex catalytic rate law that corresponds to the proposed steady-state catalytic cycle shown in Scheme 50.3. In the generally accepted mechanism for the intermolecular direct aldol reaction, proline reacts with the ketone substrate to form an enamine, which then attacks the aldehyde substrate." A reaction exhibiting saturation kinetics in [1] and rate-limiting addition of [2] can show apparent power law kinetics with both x and y exhibiting orders between zero and one. [Pg.451]

The aldol reaction is also important in the synthesis of more complex molecules and in these cases control of both regiochemistry and stereochemistry is required. In most cases, this is accomplished under conditions of kinetic control. In the sections that follow, we discuss how variations of the basic mechanism and selection of specific reagents and reaction conditions can be used to control product structure and stereochemistry. [Pg.65]

The detailed mechanism of this enantioselective transformation remains under investigation.178 It is known that the acidic carboxylic group is crucial, and the cyclization is believed to occur via the enamine derived from the catalyst and the exocyclic ketone. A computational study suggested that the proton transfer occurs through a TS very similar to that described for the proline-catalyzed aldol reaction (see page 132).179... [Pg.139]

Quinone methides formed during, for example, alkaline pulping reactions may have other mechanisms for rearomatization. Most commonly, in 8-0-4-, 8-5-, and 8-8-quinone methides QM1-QM3 (Fig. 12.2), retro-aldol elimination of formaldehyde to give styryl aryl ethers or stilbenes is common.40 Retro-aldol reactions using a strong base, for example, diazabicycloundecene (DBU) in CH2CI2 can also provide these compounds conveniently at room temperatures.41 3... [Pg.392]

Aldol-type reactions of nitrones (303) occur with electron-deficient ketones, such as a-keto esters, a, 3-diketones, and trifluoromethyl ketones. These reactions are catalyzed by secondary amines. The use of chiral cyclic amines A1-A7 leads to a-(2-hydroxyalkyl)nitrones (304) in moderate yields and rather high optical purity (Scheme 2.120) (381). The mechanism of the nitrone-aldol reaction of iV-methyl-C-ethyl nitrone with dimethyl ketomalonate in the absence and presence of L- proline has been studied by using density functional theory (DFT) (544). [Pg.228]

In order to gain more insight into this proposed mechanism, Montgomery and co-workers tried to isolate the intermediate metallacycle. This effort has also led to the development of a new [2 + 2 + 2]-reaction.226 It has been found that the presence of bipyridine (bpy) or tetramethylethylenediamine (TMEDA) makes the isolation of the desired metallacycles possible, and these metallacycles are characterized by X-ray analysis (Scheme 56).227 Besides important mechanistic implications for enyne isomerizations or intramolecular [4 + 2]-cycloadditions,228 the TMEDA-stabilized seven-membered nickel enolates 224 have been further trapped in aldol reactions, opening an access to complex polycyclic compounds and notably triquinanes. Thus, up to three rings can be generated in the intramolecular version of the reaction, for example, spirocycle 223 was obtained in 49% yield as a single diastereomer from dialdehyde 222 (Scheme 56).229... [Pg.328]


See other pages where Aldol reactions mechanisms is mentioned: [Pg.268]    [Pg.914]    [Pg.27]    [Pg.887]    [Pg.1169]    [Pg.79]    [Pg.1224]    [Pg.1566]    [Pg.14]    [Pg.451]    [Pg.67]    [Pg.813]    [Pg.1088]    [Pg.251]    [Pg.422]   
See also in sourсe #XX -- [ Pg.1220 ]




SEARCH



Aldol addition reaction mechanism

Aldol mechanism

Aldol reaction Knoevenagel mechanism

Aldol reaction base-catalyzed mechanism

Aldols Mannich reaction, mechanisms

Evans aldol reaction mechanisms

Intramolecular aldol reaction mechanism

Mechanism acid catalyzed aldol reaction

Mechanism for ester aldol reaction

Mechanism of Amine-Catalyzed Intermolecular Aldol Reactions

Mechanism of Proline-Catalyzed Intramolecular Aldol Reactions

Mukaiyama aldol reaction mechanism

Mukaiyama-aldol reaction possible mechanism

Quantum mechanical calculations aldol reactions

© 2024 chempedia.info