Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mechanism, metal catalyzed

Transition metal-catalyzed epoxidations, by peracids or peroxides, are complex and diverse in their reaction mechanisms (Section 5.05.4.2.2) (77MI50300). However, most advantageous conversions are possible using metal complexes. The use of t-butyl hydroperoxide with titanium tetraisopropoxide in the presence of tartrates gave asymmetric epoxides of 90-95% optical purity (80JA5974). [Pg.36]

The vinylcyclopropane rearrangement is of synthetic importance, as well as of mechanistic interest—i.e. the concerted vs. the radical mechanism. A reaction temperature of 200 to 400 °C is usually required for the rearrangement however, depending on substrate structure, the required reaction temperature may range from 50 to 600 °C. Photochemical and transition metal catalyzed variants are known that do not require high temperatures. [Pg.284]

Very recently, Fraser et al. (85a) proved, by isolating and analyzing the intermediate, that a similar reaction mechanism is operative in the transition-metal-catalyzed dimerization of norbornadiene. [Pg.148]

In this article we critically review most of the literature concerning non-catalyzed, proton-catalyzed and metal-catalyzed polyesterifications. Kinetic data relate both to model esterifications and polyeste-rificatiom. Using our own results we analyze the experimental studies, kinetic results and mechanisms which have been reported until now. In the case of Ti(OBu)f catalyzed reactions we show that most results were obtained under experimental conditions which modify the nature of the catalyst. In fact, the true nature of active sites in the case of metal catalysts remains largely unknown. [Pg.51]

The transition-metal catalyzed decomposition of thiirene dioxides has been also investigated primarily via kinetic studies103. Zerovalent platinum and palladium complexes and monovalent iridium and rhodium complexes were found to affect this process, whereas divalent platinum and palladium had no effect. The kinetic data suggested the mechanism in equation 7. [Pg.400]

The type of catalyst influences the rate and reaction mechanism. Reactions catalyzed with both monovalent and divalent metal hydroxides, KOH, NaOH, LiOH and Ba(OH)2, Ca(OH)2, and Mg(OH)2, showed that both valence and ionic radius of hydrated cations affect the formation rate and final concentrations of various reaction intermediates and products.61 For the same valence, a linear relationship was observed between the formaldehyde disappearance rate and ionic radius of hydrated cations where larger cation radii gave rise to higher rate constants. In addition, irrespective of the ionic radii, divalent cations lead to faster formaldehyde disappearance rates titan monovalent cations. For the proposed mechanism where an intermediate chelate participates in the reaction (Fig. 7.30), an increase in positive charge density in smaller cations was suggested to improve the stability of the chelate complex and, therefore, decrease the rate of the reaction. The radii and valence also affect the formation and disappearance of various hydrox-ymethylated phenolic compounds which dictate the composition of final products. [Pg.405]

The mechanism of metal-catalyzed /zomo-Diels-Alder reaction proposed by Noyori [57c, 58] requires the coordination of double bonds of diene and... [Pg.18]

The results presented in this review concern this metal-catalyzed mechanism. Depending on the nature, anionic or neutral, of the different nucleophiles, the result of the arylation can be a neutral substitution product or a cationic one, which most often, in the last case, undergoes an evolution, for example (starting form a phosphite) to a phosphonate or, after deprotonation, to an arylamine or to an arylether (Fig. 2). [Pg.242]

Fig. 5. Mechanism of the transition metal-catalyzed polymerization of a silacyclobutane. Fig. 5. Mechanism of the transition metal-catalyzed polymerization of a silacyclobutane.
Treating diene-yne derivatives 50 with ferrate 40 does not lead to the expected ene-allenes, instead the [4 + 2]-cycloaddition products 51 are obtained in moderate yields (eq. 1 in Scheme 11). As metal-catalyzed Diels-Alder-reactions of unactivated aUcynes and dienophiles are assumed to proceed via metaUacyclic intermediates, this supports the mechanism for the Alder-ene-reaction discussed before. [Pg.189]

Explain the Mars-van Krevelen mechanism. In what sense does it differ from a metal-catalyzed reaction ... [Pg.412]

Although N-(2-phenylethyl)morpholine is formed in only 14% yield (TOE = 0.3 h ), this is the first example of a transition metal-catalyzed anti-Markovnikov hydroamination of a non-activated olefin. Concerning the reaction mechanism, labeling experiments led the authors to favor activation of the N-H bond over olefin activation [166]. [Pg.109]

Scheme 5-3 Proposed mechanism for metal-catalyzed hydrophosphination of formaldehyde... Scheme 5-3 Proposed mechanism for metal-catalyzed hydrophosphination of formaldehyde...
Metal-catalyzed hydrophosphination has been explored with only a few metals and with a limited array of substrates. Although these reactions usually proceed more quickly and with improved selectivity than their uncatalyzed counterparts, their potential for organic synthesis has not yet been exploited fully because of some drawbacks to the known reactions. The selectivity of Pt-catalyzed reactions is not sufficiently high in many cases, and only activated substrates can be used. Lanthanide-catalyzed reactions have been reported only for intramolecular cases and also sulfer from the formation of by-products. Recent studies of the mechanisms of these reactions may lead to improved selectivity and rate profiles. Further work on asymmetric hydrophosphination can be expected, since it is unlikely that good stereocontrol can be obtained in radical or acid/base-catalyzed processes. [Pg.153]

Metal-catalyzed additions of P(III)-H and P(V)-H bonds to unsaturated substrates have been studied much less than related additions of, for example, B-H or Si-H bonds [36]. Already, some synthetically useful processes have been developed, and further work is likely to produce additional useful transformations as well as more fundamental information on the mechanisms of these reactions. [Pg.168]

Schemes 6-20 Mechanism for transition metal-catalyzed hydration of acetylene... Schemes 6-20 Mechanism for transition metal-catalyzed hydration of acetylene...
Although the path (a) has been verified by a stoichiometric reaction [23], the details of exact reaction mechanism remain unsettled. Triggered by this publication [and the Pd-catalyzed doublethiolation of alkynes described in Eq. (7.7) in Section 7-3], a number of transition metal-catalyzed additions of S-X or Se-X bonds to C-C unsaturated organic compounds started to be published. In 1994, BackvaU et al. applied the Pd(OAc)2-catalyzed hydrothiolation to conjugated enynes and obtained 17,... [Pg.221]

In most transition metal-catalyzed reactions, one of the carbene substituents is a carbonyl group, which further enhances the electrophilicity of the intermediate. There are two general mechanisms that can be considered for cyclopropane formation. One involves formation of a four-membered ring intermediate that incorporates the metal. The alternative represents an electrophilic attack giving a polar species that undergoes 1,3-bond formation. [Pg.923]

Synthetically important substitutions of aromatic compounds can also be done by nucleophilic reagents. There are several general mechanism for substitution by nucleophiles. Unlike nucleophilic substitution at saturated carbon, aromatic nucleophilic substitution does not occur by a single-step mechanism. The broad mechanistic classes that can be recognized include addition-elimination, elimination-addition, and metal-catalyzed processes. (See Section 9.5 of Part A to review these mechanisms.) We first discuss diazonium ions, which can react by several mechanisms. Depending on the substitution pattern, aryl halides can react by either addition-elimination or elimination-addition. Aryl halides and sulfonates also react with nucleophiles by metal-catalyzed mechanisms and these are discussed in Section 11.3. [Pg.1027]

In the presence of transition-metal complexes, organic compounds that are unsaturated or strained often rearrange themselves. One synthetically useful transition-metal catalyzed isomerization is the olefin migration reaction. Two general mechanisms have been proposed for olefin migrations, depending on the type of catalyst employed (A and B) (Scheme 3.8).137... [Pg.71]


See other pages where Mechanism, metal catalyzed is mentioned: [Pg.704]    [Pg.780]    [Pg.769]    [Pg.704]    [Pg.780]    [Pg.769]    [Pg.221]    [Pg.147]    [Pg.68]    [Pg.1083]    [Pg.236]    [Pg.301]    [Pg.44]    [Pg.128]    [Pg.464]    [Pg.524]    [Pg.569]    [Pg.24]    [Pg.27]    [Pg.22]    [Pg.30]    [Pg.16]    [Pg.675]    [Pg.48]    [Pg.98]    [Pg.380]   


SEARCH



Mechanical metals

Metalation mechanism

© 2024 chempedia.info