Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mechanism aqueous phase

Reaction Ingredients and Mechanisms Aqueous Phase Phenomena Monomer Droplets Polymer Particles... [Pg.131]

A diffusion mechanism is also used in dialysis as a means of separating colloids from crystalloids. The rate of diffusion of molecules in gels is practically the same as in water, indicating the continuous nature of the aqueous phase. The diffusion of gases into a stream of vapour is of considerable importance in diffusion pumps. [Pg.137]

Chain-Growth Associative Thickeners. Preparation of hydrophobically modified, water-soluble polymer in aqueous media by a chain-growth mechanism presents a unique challenge in that the hydrophobically modified monomers are surface active and form micelles (50). Although the initiation and propagation occurs primarily in the aqueous phase, when the propagating radical enters the micelle the hydrophobically modified monomers then polymerize in blocks. In addition, the hydrophobically modified monomer possesses a different reactivity ratio (42) than the unmodified monomer, and the composition of the polymer chain therefore varies considerably with conversion (57). The most extensively studied monomer of this class has been acrylamide, but there have been others such as the modification of PVAlc. Pyridine (58) was one of the first chain-growth polymers to be hydrophobically modified. This modification is a post-polymerization alkylation reaction and produces a random distribution of hydrophobic units. [Pg.320]

Aqueous Phase. In pure water, the decomposition of ozone at 20°C iavolves a complex radical chain mechanism, initiated by OH and propagated by O2 radical ions and HO radicals (25). O3 is a radical ion. [Pg.491]

Under natural conditions the rates of dissolution of most minerals are too slow to depend on mass transfer of the reactants or products in the aqueous phase. This restricts the case to one either of weathering reactions where the rate-controlling mechanism is the mass transfer of reactants and products in the soHd phase, or of reactions controlled by a surface process and the related detachment process of reactants. [Pg.214]

B. Tropohne. In a 1-1., three-necked, round-bottomed flask equipped with a mechanical stirrer, addition funnel, and reflux condenser are placed 500 ml. of glacial acetic acid and then, cautiously, 100 g. of sodium hydroxide pellets. After the pellets have dissolved, 100 g. of 7,7-dichlorobicyclo[3.2.0]hept-2-en-6-one is added and the solution is maintained at reflux under nitrogen for 8 hours. Concentrated hydrochloric acid is then added until the mixture is about pH 1 approximately 125 ml. of acid is required. After the addition of 1 1. of benzene, the mixture is filtered and the solid sodium chloride is washed with three 100-ml. portions of benzene. The two phases of the filtrate are separated and the aqueous phase is transferred to a 1-1. continuous extractor (Note 8) which is stirred magnetically. The combined benzene phase is transferred to a 2-1. pot connected to the extractor and the aqueous phase is extracted for 13 hours. Following distillation of the benzene, the remaining orange liquid is distilled under reduced pressure... [Pg.118]

Addition of a chiral carrier can improve the enantioselective transport through the membrane by preferentially forming a complex with one enantiomer. Typically, chiral selectors such as cyclodextrins (e.g. (4)) and crown ethers (e.g. (5) [21]) are applied. Due to the apolar character of the inner surface and the hydrophilic external surface of cyclodextrins, these molecules are able to transport apolar compounds through an aqueous phase to an organic phase, whereas the opposite mechanism is valid for crown ethers. [Pg.131]

Entry from the aqueous phase The mechanism of electrochemical production of hydrogen on steel in aqueous solution has received much attention. It is accepted that the reaction occurs in two main stages. The hrst of these is the initial charge transfer step to produce an adsorbed hydrogen atom. In acid solution this involves the reduction of a hydrogen ion ... [Pg.1229]

Figure 5a indicates the effect of the CTAB concentration on the rate constants of the complexes of 38b and 38c. In the case of the water soluble 38b ligand, the rate increases with increasing CTAB concentration up to a saturation level. This type of saturation kinetics is usually interpreted to show the incorporation of a ligand-metal ion complex into a micellar phase from a bulk aqueous phase, and the catalytic activity of the complex is higher in the micellar phase than in the aqueous phase. In the case of lipophilic 38c, a very similar curve as in Fig. 4 is obtained. At a first glance, there appears to be a big difference between these two curves. However, they are rather common in micellar reactions and obey the same reaction mechanism 27). [Pg.158]

A possible mechanism of the extraction of tantalum and niobium using different solvents, and their stripping into the aqueous phase, was reviewed comprehensively by Babkin, Maiorov and Nikolaev [458,459]. [Pg.275]

Emulsion polymerizations most often involve the use of water-soluble initiators (e.g. persulfate see 33.2.6.1) and polymer chains are initiated in the aqueous phase. A number of mechanisms for particle formation and entry have been described, however, a full discussion of these is beyond the scope of this book. Readers are referred to recent texts on emulsion polymerization by Gilbert4 and Lovell and El-Aasser43 for a more comprehensive treatment. [Pg.63]

Emulsion polymerization has proved more difficult. N " Many of the issues discussed under NMP (Section 9.3.6.6) also apply to ATRP in emulsion. The system is made more complex by both activation and deactivation steps being bimolecular. There is both an activator (Mtn) and a deactivator (ML 1) that may partition into the aqueous phase, although the deactivator is generally more water-soluble than the activator because of its higher oxidation state. Like NMP, successful emulsion ATRP requires conditions where there is no discrete monomer droplet phase and a mechanism to remove excess deactivator built up in the particle phase as a consequence of the persistent radical effect.210 214 Reverse ATRP (Section 9.4,1,2) with water soluble dialky 1 diazcncs is the preferred initiation method/87,28 ... [Pg.498]

The low TTA dependence at 35.0°C probably is attributable to dissolution of TTA in the aqueous phase. Observation of fourth-power dependence on acidity argues against any change in the extraction mechanism (e.g., Pu(IV) reduction or NO3 involvement). An aqueous Pu(TTA)3+ complex has been reported (14, 15) and this possibility has been considered in the error analysis of the Pu(IV)-sulfate stability constants. [Pg.259]

A. (S)-Ethyl 2-(t-Butyldimethylsilyloxy)propanoate (1). A 2-L, two-necked, round-bottomed flask equipped with a mechanical stirrer and inert gas inlet (Note 1) is charged with (S)-ethyl lactate (118 g, 1.0 mol), 500 mL of dimethylformamide (DMF), and imidazole (102 g, 1.5 mol) (Note 2). The solution is cooled in a ice bath and te/ t-butyldimethy 1 si 1 y 1 chloride (TBDMSC1) (150 g, 1.0 mol) is added in three 50-g portions, at intervals of 30 min between each addition. After the addition of the third portion, a white precipitate forms. The ice bath allowed to melt gradually overnight. After 18 hr, the reaction mixture is diluted with 300 mL of water and 500 mL of hexanes. The aqueous phase is separated and extracted with 300 mL of hexanes, and the combined hexane extracts are washed with three 50-mL portions of saturated brine, dried over MgS04, filtered, and concentrated by rotary evaporation to afford 240 g (103%) of the TBDMS ether as a colorless liquid. The product is distilled under vacuum (bp 70-78°C, 0.5 mm bath temperature 95-105°C) (Note 3) to afford 222 g (96%) of ester 1 as a colorless liquid (Notes 4, 5). [Pg.82]

When NMHC are significant in concentration, differences in their oxidation mechanisms such as how the NMHC chemistry was parameterized, details of R02-/R02 recombination (95), and heterogenous chemistry also contribute to differences in computed [HO ]. Recently, the sensitivity of [HO ] to non-methane hydrocarbon oxidation was studied in the context of the remote marine boundary-layer (156). It was concluded that differences in radical-radical recombination mechanisms (R02 /R02 ) can cause significant differences in computed [HO ] in regions of low NO and NMHC levels. The effect of cloud chemistry in the troposphere has also recently been studied (151,180). The rapid aqueous-phase breakdown of formaldehyde in the presence of clouds reduces the source of HOj due to RIO. In addition, the dissolution in clouds of a NO reservoir (N2O5) at night reduces the formation of HO and CH2O due to R6-RIO and R13. Predictions for HO and HO2 concentrations with cloud chemistry considered compared to predictions without cloud chemistry are 10-40% lower for HO and 10-45% lower for HO2. [Pg.93]


See other pages where Mechanism aqueous phase is mentioned: [Pg.62]    [Pg.62]    [Pg.2597]    [Pg.278]    [Pg.278]    [Pg.194]    [Pg.334]    [Pg.512]    [Pg.259]    [Pg.220]    [Pg.538]    [Pg.14]    [Pg.492]    [Pg.354]    [Pg.20]    [Pg.20]    [Pg.88]    [Pg.133]    [Pg.148]    [Pg.408]    [Pg.190]    [Pg.190]    [Pg.193]    [Pg.344]    [Pg.161]    [Pg.206]    [Pg.207]    [Pg.29]    [Pg.24]    [Pg.12]    [Pg.63]    [Pg.64]    [Pg.91]    [Pg.50]    [Pg.83]    [Pg.114]    [Pg.413]   
See also in sourсe #XX -- [ Pg.94 , Pg.255 , Pg.257 , Pg.267 ]




SEARCH



© 2024 chempedia.info