Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Maxwell viscoelasticity

Figure 4. The imaginary part of the calculated viscosity is plotted as a function of the Fourier frequency at the triple point (solid line). Also shown is the prediction of the Maxwell viscoelastic model (dashed line), given by Eq. (239). The viscosity is scaled by a2/ /(mkBT) and the frequency is scaled by x l, where xsc = [ma2/kBT l/2. For more details see the text. Figure 4. The imaginary part of the calculated viscosity is plotted as a function of the Fourier frequency at the triple point (solid line). Also shown is the prediction of the Maxwell viscoelastic model (dashed line), given by Eq. (239). The viscosity is scaled by a2/ /(mkBT) and the frequency is scaled by x l, where xsc = [ma2/kBT l/2. For more details see the text.
Figure 6.5 Maxwell viscoelastic model and its prediction of stress relaxation in a melt after the cessation of steady shear flow. t<, is the relaxation time. Figure 6.5 Maxwell viscoelastic model and its prediction of stress relaxation in a melt after the cessation of steady shear flow. t<, is the relaxation time.
Fig. 3 Impacting droplet - results of SPH simulations for a Maxwell viscoelastic fluid at various times... Fig. 3 Impacting droplet - results of SPH simulations for a Maxwell viscoelastic fluid at various times...
The Maxwell class of viscoelastic constitutive equations are described by a simpler form of Equation (1.22) in which A = 0. For example, the upper-convected Maxwell model (UCM) is expressed as... [Pg.11]

The first finite element schemes for differential viscoelastic models that yielded numerically stable results for non-zero Weissenberg numbers appeared less than two decades ago. These schemes were later improved and shown that for some benchmark viscoelastic problems, such as flow through a two-dimensional section with an abrupt contraction (usually a width reduction of four to one), they can generate simulations that were qualitatively comparable with the experimental evidence. A notable example was the coupled scheme developed by Marchal and Crochet (1987) for the solution of Maxwell and Oldroyd constitutive equations. To achieve stability they used element subdivision for the stress approximations and applied inconsistent streamline upwinding to the stress terms in the discretized equations. In another attempt, Luo and Tanner (1989) developed a typical decoupled scheme that started with the solution of the constitutive equation for a fixed-flow field (e.g. obtained by initially assuming non-elastic fluid behaviour). The extra stress found at this step was subsequently inserted into the equation of motion as a pseudo-body force and the flow field was updated. These authors also used inconsistent streamline upwinding to maintain the stability of the scheme. [Pg.81]

Keeping all of the flow regime conditions identical to the previous example, we now consider a finite element model based on treating silicon rubber as a viscoelastic fluid whose constitutive behaviour is defined by the following upper-convected Maxwell equation... [Pg.152]

The Maxwell and Voigt models of the last two sections have been investigated in all sorts of combinations. For our purposes, it is sufficient that they provide us with a way of thinking about relaxation and creep experiments. Probably one of the reasons that the various combinations of springs and dash-pots have been so popular as a way of representing viscoelastic phenomena is the fact that simple and direct comparison is possible between mechanical and electrical networks, as shown in Table 3.3. In this parallel, the compliance of a spring is equivalent to the capacitance of a condenser and the viscosity of a dashpot is equivalent to the resistance of a resistor. The analogy is complete... [Pg.172]

Through the dashpot a viscous contribution was present in both the Maxwell and Voigt models and is essential to the entire picture of viscoelasticity. These have been the viscosities of mechanical units which produce equivalent behavior to that shown by polymers. While they help us understand and describe observed behavior, they do not give us the actual viscosity of the material itself. [Pg.189]

It is apparent therefore that the Superposition Principle is a convenient method of analysing complex stress systems. However, it should not be forgotten that the principle is based on the assumption of linear viscoelasticity which is quite inapplicable at the higher stress levels and the accuracy of the predictions will reflect the accuracy with which the equation for modulus (equation (2.33)) fits the experimental creep data for the material. In Examples (2.13) and (2.14) a simple equation for modulus was selected in order to illustrate the method of solution. More accurate predictions could have been made if the modulus equation for the combined Maxwell/Kelvin model or the Standard Linear Solid had been used. [Pg.103]

The viscoelastic behaviour of a certain plastic is to be represented by spring and dashpot elements having constants of 2 GN/m and 90 GNs/m respectively. If a stress of 12 MN/m is applied for 100 seconds and then completely removed, compare the values of strain predicted by the Maxwell and Kelvin-Voigt models after (a) 50 seconds (b) 150 seconds. [Pg.162]

The grade of polypropylene whose creep curves are given in Fig. 2.5 is to have its viscoelastic behaviour fltted to a Maxwell model for stresses up to 6 MN/m and times up to ICKX) seconds. Determine the two constants for the model and use these to determine the stress in the material after 900 seconds if the material is subjected to a constant strain of 0.4% throughout the 900 seconds. [Pg.162]

Creep modeling A stress-strain diagram is a significant source of data for a material. In metals, for example, most of the needed data for mechanical property considerations are obtained from a stress-strain diagram. In plastic, however, the viscoelasticity causes an initial deformation at a specific load and temperature and is followed by a continuous increase in strain under identical test conditions until the product is either dimensionally out of tolerance or fails in rupture as a result of excessive deformation. This type of an occurrence can be explained with the aid of the Maxwell model shown in Fig. 2-24. [Pg.66]

Fig. 2-24 Maxwell model used to explain viscoelastic behavior. Fig. 2-24 Maxwell model used to explain viscoelastic behavior.
The Maxwell model is also called Maxwell fluid model. Briefly it is a mechanical model for simple linear viscoelastic behavior that consists of a spring of Young s modulus (E) in series with a dashpot of coefficient of viscosity (ji). It is an isostress model (with stress 5), the strain (f) being the sum of the individual strains in the spring and dashpot. This leads to a differential representation of linear viscoelasticity as d /dt = (l/E)d5/dt + (5/Jl)-This model is useful for the representation of stress relaxation and creep with Newtonian flow analysis. [Pg.66]

Because of the assumption that linear relations exist between shear stress and shear rate (equation 3.4) and between distortion and stress (equation 3.128), both of these models, namely the Maxwell and Voigt models, and all other such models involving combinations of springs and dashpots, are restricted to small strains and small strain rates. Accordingly, the equations describing these models are known as line viscoelastic equations. Several theoretical and semi-theoretical approaches are available to account for non-linear viscoelastic effects, and reference should be made to specialist works 14-16 for further details. [Pg.116]

It is likely that most biomaterials possess non-linear elastic properties. However, in the absence of detailed measurements of the relevant properties it is not necessary to resort to complicated non-linear theories of viscoelasticity. A simple dashpot-and-spring Maxwell model of viscoelasticity will provide a good basis to consider the main features of the behaviour of the soft-solid walls of most biomaterials in the flow field of a typical bioprocess equipment. [Pg.87]

One of the mechanisms of drag reduction is that transmission of eddies can be damped by the viscoelastic properties of fluids. The transfer process of an isolated eddy in Maxwell fluids with viscoelastic properties was studied, and the expressions describing such phenomena were obtained [1103]. The results of the study showed that eddy transmission was damped significantly with an increase of the viscoelastic properties of the fluids. [Pg.167]

The simplest model that can show the most important aspects of viscoelastic behaviour is the Maxwell fluid. A mechanical model of the Maxwell fluid is a viscous element (a piston sliding in a cylinder of oil) in series with an elastic element (a spring). The total extension of this mechanical model is the sum of the extensions of the two elements and the rate of extension is the sum of the two rates of extension. It is assumed that the same form of combination can be applied to the shearing of the Maxwell fluid. [Pg.54]

In Chapter 1 it was pointed out that the Maxwell fluid is a very simple model of the first order effects observed with viscoelastic liquids. The equation of a Maxwell fluid is... [Pg.134]

One feature of the Maxwell model is that it allows the complete relaxation of any applied strain, i.e. we do not observe any energy stored in the sample, and all the energy stored in the springs is dissipated in flow. Such a material is termed a viscoelastic fluid or viscoelastic liquid. However, it is feasible for a material to show an apparent yield stress at low shear rates or stresses (Section 6.2). We can think of this as an elastic response at low stresses or strains regardless of the application time (over all practical timescales). We can only obtain such a response by removing one of the dashpots from the viscoelastic model in Figure 4.8. When a... [Pg.114]

This material is a linear viscoelastic solid and is described by the multiple Maxwell model with an additional term, the spring elasticity... [Pg.115]

We have developed the idea that we can describe linear viscoelastic materials by a sum of Maxwell models. These models are the most appropriate for describing the response of a body to an applied strain. The same ideas apply to a sum of Kelvin models, which are more appropriately applied to stress controlled experiments. A combination of these models enables us to predict the results of different experiments. If we were able to predict the form of the model from the chemical constituents of the system we could predict all the viscoelastic responses in shear. We know that when a strain is applied to a viscoelastic material the molecules and particles that form the system gradual diffuse to relax the applied strain. For example, consider a solution of polymer... [Pg.116]

For a viscoelastic solid the situation is more complex because the solid component will never flow. As the strain is applied with time the stress will increase continually with time. The sample will show no plateau viscosity, although there may be a low shear viscous contribution. This applies to both a single Maxwell model and one with a spectrum of processes ... [Pg.125]

An important and sometimes overlooked feature of all linear viscoelastic liquids that follow a Maxwell response is that they exhibit anti-thixo-tropic behaviour. That is if a constant shear rate is applied to a material that behaves as a Maxwell model the viscosity increases with time up to a constant value. We have seen in the previous examples that as the shear rate is applied the stress progressively increases to a maximum value. The approach we should adopt is to use the Boltzmann Superposition Principle. Initially we apply a continuous shear rate until a steady state... [Pg.125]

You will notice that this is the expression for a Maxwell model (see Equation 4.25). From Equations (4.121) to (4.125) we have applied a Fourier transform and confirmed that a Maxwell model fits at least this portion of the theory of linear viscoelasticity. The simple expression for the relationship between J (co) and G (co) allows an interesting comparison to be performed. Suppose we take our equations for a Maxwell model and apply Equation (4.108) to transform the response to an oscillating strain into the response for an oscillating stress. This requires careful use of simple algebra to give... [Pg.138]

Figure 3.10 Basic mechanical elements for solids and fluids a) dash pot for a viscous response, b) spring for an elastic response, c) Voigt or Kelvin solid, d) Maxwell fluid, and e) the four-parameter viscoelastic fluid... Figure 3.10 Basic mechanical elements for solids and fluids a) dash pot for a viscous response, b) spring for an elastic response, c) Voigt or Kelvin solid, d) Maxwell fluid, and e) the four-parameter viscoelastic fluid...
When a spring and a dash pot are connected in series the resulting structure is the simplest mechanical representation of a viscoelastic fluid or Maxwell fluid, as shown in Fig. 3.10(d). When this fluid is stressed due to a strain rate it will elongate as long as the stress is applied. Combining both the Maxwell fluid and Voigt solid models in series gives a better approximation for a polymeric fluid. This model is often referred to as the four-parameter viscoelastic model and is shown in Fig. 3.10(e). Atypical strain response as a function of time for an applied stress for the four-parameter model is found in Fig. 3.12. [Pg.75]

Note 7 There are definitions of linear viscoelasticity which use integral equations instead of the differential equation in Definition 5.2. (See, for example, [11].) Such definitions have certain advantages regarding their mathematical generality. However, the approach in the present document, in terms of differential equations, has the advantage that the definitions and descriptions of various viscoelastic properties can be made in terms of commonly used mechano-mathematical models (e.g. the Maxwell and Voigt-Kelvin models). [Pg.163]

Since polymers are viscoelastic solids, combinations of these models are used to demonstrate the deformation resulting from the application of stress to an isotropic solid polymer. Maxwell joined the two models in series to explain the mechanical properties of pitch and tar (Figure 14.2a). He assumed that the contributions of both the spring and dashpot to strain were additive and that the application of stress would cause an instantaneous elongation of the spring, followed by a slow response of the piston in the dashpot. Thus, the relaxation time (t), when the stress and elongation have reached equilibrium, is equal to rj/G. [Pg.461]

In the Maxwell model for viscoelastic deformation, it is assumed that the total strain is equal to the elastic strain plus the viscous strain. This is expressed in the two following differential equations from Equations 14.2 and 14.3. [Pg.461]

We can get a first approximation of the physical nature of a material from its response time. For a Maxwell element, the relaxation time is the time required for the stress in a stress-strain experiment to decay to 1/e or 0.37 of its initial value. A material with a low relaxation time flows easily so it shows relatively rapid stress decay. Thus, whether a viscoelastic material behaves as a solid or fluid is indicated by its response time and the experimental timescale or observation time. This observation was first made by Marcus Reiner who defined the ratio of the material response time to the experimental timescale as the Deborah Number, Dn-Presumably the name was derived by Reiner from the Biblical quote in Judges 5, Song of Deborah, where it says The mountains flowed before the Lord. ... [Pg.465]

In which element or model for a viscoelastic body will the elastic response be retarded by viscous resistance (a) Maxwell or (b) Voigt-Kelvin ... [Pg.481]


See other pages where Maxwell viscoelasticity is mentioned: [Pg.191]    [Pg.45]    [Pg.180]    [Pg.191]    [Pg.45]    [Pg.180]    [Pg.12]    [Pg.13]    [Pg.164]    [Pg.107]    [Pg.116]    [Pg.113]    [Pg.117]    [Pg.140]    [Pg.188]    [Pg.229]    [Pg.260]    [Pg.281]    [Pg.453]    [Pg.76]   
See also in sourсe #XX -- [ Pg.191 ]




SEARCH



Linear viscoelastic model Maxwell

Linear viscoelasticity) Maxwell model

Maxwell [model viscoelasticity

Maxwell model for viscoelastic

Maxwell model linear viscoelastic behaviour

Maxwell model, viscoelastic gels

Viscoelastic models Maxwell

Viscoelasticity Maxwell element

Viscoelasticity Maxwell equations

© 2024 chempedia.info