Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Matrix element functions

Luce T A and Bennemann K H 1998 Nonlinear optical response of noble metals determined from first-principles electronic structures and wave functions calculation of transition matrix elements P/rys. Rev. B 58 15 821-6... [Pg.1302]

The conceptually simplest approach to solve for the -matrix elements is to require the wavefimction to have the fonn of equation (B3.4.4). supplemented by a bound function which vanishes in the asymptote [32, 33, 34 and 35] This approach is analogous to the fiill configuration-mteraction (Cl) expansion in electronic structure calculations, except that now one is expanding the nuclear wavefimction. While successfiti for intennediate size problems, the resulting matrices are not very sparse because of the use of multiple coordinate systems, so that this type of method is prohibitively expensive for diatom-diatom reactions at high energies. [Pg.2295]

In the basis set formulation, we need to evaluate matrix elements over the G-H basis functions. We can avoid this by introducing a discrete variable representation method. We can obtain the DVR expressions by expanding the time-dependent amplitudes a (t) in the following manner ... [Pg.77]

The potential matrix elements are then obtained by making Taylor expansions around 00, using suitable zero-order diabatic potential energy functions,... [Pg.285]

As shown above in Section UFA, the use of wavepacket dynamics to study non-adiabatic systems is a trivial extension of the methods described for adiabatic systems in Section H E. The equations of motion have the same form, but now there is a wavepacket for each electronic state. The motions of these packets are then coupled by the non-adiabatic terms in the Hamiltonian operator matrix elements. In contrast, the methods in Section II that use trajectories in phase space to represent the time evolution of the nuclear wave function cannot be... [Pg.288]

Note that the exact adiabatic functions are used on the right-hand side, which in practical calculations must be evaluated by the full derivative on the left of Eq. (24) rather than the Hellmann-Feynman forces. This forai has the advantage that the R dependence of the coefficients, c, does not have to be considered. Using the relationship Eq. (78) for the off-diagonal matrix elements of the right-hand side then leads directly to... [Pg.292]

Yarkoni [108] developed a computational method based on a perturbative approach [109,110], He showed that in the near vicinity of a conical intersection, the Hamiltonian operator may be written as the sum a nonperturbed Hamiltonian Hq and a linear perturbative temr. The expansion is made around a nuclear configuration Q, at which an intersection between two electronic wave functions takes place. The task is to find out under what conditions there can be a crossing at a neighboring nuclear configuration Qy. The diagonal Hamiltonian matrix elements at Qy may be written as... [Pg.382]

In order to show this, we have to evaluate the matrix element f AB = (A ff B). We begin by writing out the orbital part of the A wave function explicitly... [Pg.392]

TV. Matrix Elements of Angular-Momencum-Adopted Gaussian Functions... [Pg.399]

In modem quantum chemistry packages, one can obtain moleculai basis set at the optimized geometry, in which the wave functions of the molecular basis are expanded in terms of a set of orthogonal Gaussian basis set. Therefore, we need to derive efficient fomiulas for calculating the above-mentioned matrix elements, between Gaussian functions of the first and second derivatives of the Coulomb potential ternis, especially the second derivative term that is not available in quantum chemistry packages. Section TV is devoted to the evaluation of these matrix elements. [Pg.409]

IV. MATRIX ELEMENTS OF ANGULAR-MOMENTUM-ADOPTED GAUSSIAN FUNCTIONS... [Pg.411]

This type of basis functions is frequently used in popular quantum chemishy packages. We shall discuss the way to evaluate different kinds of matrix elements in this basis set that are often used in quantum chemistt calculation. [Pg.411]

Next, we shall consider four kinds of integrals. The first is the expectation value of the Coulomb potential by one nucleus for one of the primitive basis function centered at that nucleus. The second is the expectation value of the Coulomb potential by one nucleus for one of the primitive basis function centered at a different point (usually another nucleus). Then, we will consider the matrix element of a Coulomb term between two primitive basis functions at different centers. The third case is when one basis function is centered at the nucleus considered. The fourth case is when both basis functions are not centered at that nucleus. By that we mean, for two Gaussian basis functions defined in Eqs. (73) and (74), we are calculating... [Pg.413]

The matrix element between Gaussian functions at different centers is in general of the form... [Pg.426]

To calculate the matrix elements for H2 in the minimal basis set, we approximate the Slater Is orbital with a Gaussian function. That is, we replace the Is radial wave function... [Pg.436]

Since the form of the electronic wave functions depends also on the coordinate p (in the usual, parametric way), the matrix elements (21) are functions of it too. Thus it looks at first sight as if a lot of cumbersome computations of derivatives of the electronic wave functions have to be carried out. In this case, however, nature was merciful the matrix elements in (21) enter the Hamiltonian matrix weighted with the rotational constant A, which tends to infinity when the molecule reaches linear geometry. This means that only the form of the wave functions, that is, of the matrix elements in (21), in the p 0 limit are really needed. In the above mentioned one-elecbon approximation... [Pg.486]

We write them as i / (9) to shess that now we use the space-fixed coordinate frame. We shall call this basis diabatic, because the functions (26) are not the eigenfunction of the electronic Hamiltonian. The matrix elements of are... [Pg.487]

A convenience of electronic basis functions (53) is that they reduce at infinitesimal-amplitude bending to (28) with the same meaning of the angle 9 we may employ these asymptotic forms in the computation of the matrix elements of the kinetic energy operator and in this way avoid the necessity of carrying out calculations of the derivatives of the electronic wave functions with respect to the nuclear coordinates. The electronic part of the Hamiltonian is represented in the basis (53) by... [Pg.522]

The matrix elements (60) represent effective operators that still have to act on the functions of nuclear coordinates. The factors exp( 2iAx) determine the selection rules for the matrix elements involving the nuclear basis functions. [Pg.522]

It follows that the only possible values for la + Ip are S A and the computation of vibronic levels can be carried out for each K block separately. Matrix elements of the electronic operator diagonal with respect to the electronic basis [first of Eqs. (60)], and the matrix elements of T are diagonal with respect to the quantum number I = la + Ip. The off-diagonal elements of [second and third of Eqs. (60)] connect the basis functions with I — la + Ip and I — l + l — l 2A. [Pg.523]

Thus in the lowest order approximation the angle x is eliminated from the off-diagonal matrix elements of [second and third of Eqs. (60)] it solely determines the selection rules for matrix elements of Hg with respect to nuclear basis functions. [Pg.525]

Thus, the neglect of the off-diagonal matrix elements allows the change from mixed states of the nuclear subsystem to pure ones. The motion of the nuclei leads only to the deformation of the electronic distribution and not to transitions between different electronic states. In other words, a stationary distribution of electrons is obtained for each instantaneous position of the nuclei, that is, the elechons follow the motion of the nuclei adiabatically. The distribution of the nuclei is described by the wave function x (R i) in the potential V + Cn , known as the proper adiabatic approximation [41]. The off-diagonal operators C n in the matrix C, which lead to transitions between the states v / and t / are called operators of nonadiabaticity and the potential V = (R) due to the mean field of all the electrons of the system is called the adiabatic potential. [Pg.558]

The ti eatment of the Jahn-Teller effect for more complicated cases is similar. The general conclusion is that the appearance of a linear term in the off-diagonal matrix elements H+- and H-+ leads always to an instability at the most symmetric configuration due to the fact that integrals of the type do not vanish there when the product < / > / has the same species as a nontotally symmetiic vibration (see Appendix E). If T is the species of the degenerate electronic wave functions, the species of will be that of T, ... [Pg.589]

The T-matrix elements are analytic functions (vectors) in the above-mentioned region of configuration space. [Pg.688]

Here ak a ) is the annihilation (creation) operator of an exciton with the momentum k and energy Ek, operator an(a ) annihilates (creates) an exciton at the n-th site, 6,(6lt,) is the annihilation (creation) operator of a phonon with the momentum q and energy u) q), x q) is the exciton-phonon coupling function, N is the total number of crystal molecules. The exciton energy is Ek = fo + tfcj where eo is the change of the energy of a crystal molecule with excitation, and tk is the Fourier transform of the energy transfer matrix elements. [Pg.445]

When the Coulomb and exchange operators are expressed in terms of the basis functions and the orbital expansion is substituted for xu then their contributions to the Fock matrix element take the following form ... [Pg.78]

In ub initio calculations all elements of the Fock matrix are calculated using Equation (2.226), ii re peifive of whether the basis functions ip, cp, formally bonded. To discuss the semi-empirical melh ids it is useful to consider the Fock matrix elements in three groups (the diagonal... [Pg.107]


See other pages where Matrix element functions is mentioned: [Pg.381]    [Pg.381]    [Pg.161]    [Pg.2101]    [Pg.2202]    [Pg.2214]    [Pg.4]    [Pg.135]    [Pg.180]    [Pg.259]    [Pg.301]    [Pg.401]    [Pg.442]    [Pg.485]    [Pg.487]    [Pg.488]    [Pg.512]    [Pg.514]    [Pg.557]    [Pg.644]    [Pg.657]    [Pg.659]    [Pg.262]    [Pg.113]    [Pg.154]   
See also in sourсe #XX -- [ Pg.490 ]




SEARCH



Basis functions matrix elements

Dirac delta function matrix elements

Functional element

Functionality matrix

Kinetic energy matrix elements functions

Local density functional Hamiltonian matrix elements

Matrix element

Matrix element between projected functions

Matrix function

Off-Diagonal Matrix Elements of Total Hamiltonian between Unsymmetrized Basis Functions

Primitive basis function matrix elements

Wave Functions and Matrix Elements of Bichromophores

Wave function expansions transition matrix elements

Wave functions and matrix elements

© 2024 chempedia.info