Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Material behavior classifications

Material behavior have many classifications. Examples are (1) creep, and relaxation behavior with a primary load environment of high or moderate temperatures (2) fatigue, viscoelastic, and elastic range vibration or impact (3) fluidlike flow, as a solid to a gas, which is a very high velocity or hypervelocity impact and (4) crack propagation and environmental embrittlement, as well as ductile and brittle fractures. [Pg.45]

This classification of material behavior is summarized in Table 3-1 (in which the subscripts have been omitted for simplicity). Since we are concerned with fluids, we will concentrate primarily on the flow behavior of Newtonian and non-Newtonian fluids. However, we will also illustrate some of the unique characteristics of viscoelastic fluids, such as the ability of solutions of certain high polymers to flow through pipes in turbulent flow with much less energy expenditure than the solvent alone. [Pg.59]

Most common fluids of simple structure are Newtonian (i.e., water, air, glycerine, oils, etc.). However, fluids with complex structures (i.e., high polymer melts or solutions, suspensions, emulsions, foams, etc.) are generally non-Newtonian. Examples of non-Newtonian behavior include mud, paint, ink, mayonnaise, shaving cream, polymer melts and solutions, toothpaste, etc. Many two-phase systems (e.g., suspensions, emulsions, foams, etc.) are purely viscous fluids and do not exhibit significant elastic or memory properties. However, many high polymer fluids (e.g., melts and solutions) are viscoelastic and exhibit both elastic (memory) as well as nonlinear viscous (flow) properties. A classification of material behavior is summarized in Table 5.1 (in which the subscripts have been omitted for simplicity). Only purely viscous Newtonian and non-Newtonian fluids are considered here. The properties and flow behavior of viscoelastic fluids are the subject of numerous books and papers (e.g., Darby, 1976 Bird et al., 1987). [Pg.396]

Summarization of all material behaviors can be by classifications. They include ... [Pg.690]

Abstract Multicomponent materials based on synthetic polymers were designed and used in a wide variety of common and hi-tech applications, including the outdoor applications as well. Therefore, their response to the UV radiation and complex weathering conditions (temperature, seasonal or freeze—thaw cycles, humidity, pH, pollutants, ozone, microorganisms) is a matter of utmost importance in terms of operational reliability and lifetime, protection of the environment and health safety. This chapter offers an overview of this subject and a critical assessment of more particular topics related to this issue. Thus, various types of multicomponent systems based on thermoplastic and thermosetting polymer matrices were subjected to natural and/or simulated UV radiation and/or weathering conditions. Their behavior was evaluated in correlation with their complex formulation and taking into consideration that the overall effect is a sum of the individual responses and interactions between components. The nature and type of the matrix, the nature, type and size distribution of the filler, the formation of the interphase and its characteristics, the interfacial adhesion and specific interfacial interactions, they all were considered as factors that influenced the materials behavior, and, at the same time, were used as classification criteria for this review. [Pg.109]

It is very important to make classification of dynamic models and choose an appropriate one to provide similarity between model behavior and real characteristics of the material. The following general classification of the models is proposed for consideration deterministic, stochastic or their combination, linear, nonlinear, stationary or non-stationary, ergodic or non-ergodic. [Pg.188]

Ferrites can be classified according to crystal stmcture, ie, cubic vs hexagonal, or magnetic behavior, ie, soft vs hard ferrites. A systematic classification as well as some appHcations ate given in Table 1 (see also Magnetic materials, bulk Magnetic materials, thin film). [Pg.186]

The basis of all bulk conveyor engineering is the precise definition and accurate classification of materials according to individual characteristics under a specific combination of handling conditions (1). Since the late 1960s there has been an extraordinary growth in research into the fundamental properties and behavior of particulate soHds. However, as of this writing, it is not possible to predict the handling behavior of a bulk soHds material relevant to conditions in a specific conveyor, merely on the basis of the discrete particle properties. [Pg.153]

The basic nature of composite materials was introduced in Chapter 1. An overall classification scheme was presented, and the mechanical behavior aspects of composite materials that differ from those of conventional materials were described in a qualitative fashion. The book was then restricted to laminated fiber-reinforced composite mafeffals. The basic definitions and how such materials are made were then treated. Finally, the current and potential advantages of composite materials were discussed along with some case histories that clearly reveal how composite materials are used in structures. [Pg.332]

After a temptative structure-based classification of different kinds of polymorphism, a description of possible crystallization and interconversion conditions is presented. The influence on the polymorphic behavior of comonomeric units and of a second polymeric component in miscible blends is described for some polymer systems. It is also shown that other characterization techniques, besides diffraction techniques, can be useful in the study of polymorphism in polymers. Finally, some effects of polymorphism on the properties of polymeric materials are discussed. [Pg.183]

Materials that lie close to or are on a classification boundary may exhibit slugging behavior from either one of the adjoining categories. This could be explained further by the particle size distribution problem or limitation described above. [Pg.725]

If any material is in the vicinity of a classification boundary (i.e., Group A-B or Group B-D boundary), then due to particle size distribution it is possible that the material may exhibit flow behavior or performance from either one of the adjoining categories. [Pg.732]

Figure 4 Material classification on the basis of their deformation behavior in the presence of applied stress. Figure 4 Material classification on the basis of their deformation behavior in the presence of applied stress.

See other pages where Material behavior classifications is mentioned: [Pg.395]    [Pg.11]    [Pg.165]    [Pg.148]    [Pg.165]    [Pg.114]    [Pg.112]    [Pg.171]    [Pg.462]    [Pg.201]    [Pg.277]    [Pg.151]    [Pg.420]    [Pg.718]    [Pg.720]    [Pg.722]    [Pg.730]    [Pg.13]    [Pg.668]    [Pg.86]    [Pg.110]    [Pg.97]    [Pg.302]    [Pg.548]    [Pg.234]    [Pg.400]    [Pg.451]    [Pg.462]    [Pg.374]    [Pg.171]    [Pg.313]    [Pg.118]    [Pg.76]   
See also in sourсe #XX -- [ Pg.690 ]

See also in sourсe #XX -- [ Pg.690 ]




SEARCH



Classification of Materials Based on Their Rheological Behavior

Material classification

Materials behavior

Rheological Behavior and Material Classification

© 2024 chempedia.info