Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Material balance continuity

A stoichiometric analysis based on the species expected to be present as reactants and products to determine, among other things, the maximum number of independent material balance (continuity) equations and kinetics rate laws required, and the means to take into account change of density, if appropriate. (A stoichiometric table or spreadsheet may be a useful aid to relate chosen process variables (Fj,ch etc.) to a minimum set of variables as determined by stoichiometry.)... [Pg.442]

Material balance Continuous methods of nitration Earlier methods Modem methods British method German method Swedish Bofors-Noretl method... [Pg.339]

Material balance—continuity. In fluid mechanics the material balance... [Pg.189]

Reservoir pressure is measured in selected wells using either permanent or nonpermanent bottom hole pressure gauges or wireline tools in new wells (RFT, MDT, see Section 5.3.5) to determine the profile of the pressure depletion in the reservoir. The pressures indicate the continuity of the reservoir, and the connectivity of sand layers and are used in material balance calculations and in the reservoir simulation model to confirm the volume of the fluids in the reservoir and the natural influx of water from the aquifer. The following example shows an RFT pressure plot from a development well in a field which has been producing for some time. [Pg.334]

The entrainer recovery column takes the distillate stream, from the azeo-column and separates it into a bottoms stream of pure water, and a ternary distillate stream for recycle to column 2. The overall material balance line for column 3 is shown in Figure 19b. This sequence was one of two original continuous processes disclosed in 1915 (106). More recendy, it has been appHed to other azeotropic separations (38,107,108). [Pg.196]

Material Balances Whenever mass-transfer applications involve equipment of specific dimensions, flux equations alone are inadequate to assess results. A material balance or continuity equation must also be used. When the geometiy is simple, macroscopic balances suffice. The following equation is an overall mass balance for such a unit having bulk-flow ports and ports or interfaces through which diffusive flux can occur ... [Pg.592]

A continuously sti7ied tank 7-eactor (GSTR) battery Material balances ... [Pg.684]

The primary function of a continuous thickener is to concentrate sus-penaed solids by gravity settling so that a steady-state material balance is achieved, solids being withdrawn continuously in the underflow at the rate they are supphed in the feed. Normally, an inventory of pulp is maintained in order to achieve the desired concentration. This volume will vary somewhat as operating conditions change on occasion, this inventoiy can be used for storage of sohds when reed and underflow rates are reduced or temporarily suspended. [Pg.1682]

Continuous. stirred tank reactor (CSTR), with the effluent concentration the same as the uniform vessel concentration. With a mean residence time t = V /V, the material balance is... [Pg.2083]

Now you can reconsider the material balance equations by adding those additional factors identified in the previous step. If necessary, estimates of unaccountable losses will have to be calculated. Note that, in the case of a relatively simple manufacturing plant, preparation of a preliminary material-balance system and its refinement (Steps 14 and 15) can usefully be combined. For more-complex P2 assessments, however, two separate steps are likely to be more appropriate. An important rule to remember is that the inputs should ideally equal the outputs - but in practice this will rarely be the case. Some judgment will be required to determine what level of accuracy is acceptable, and we should have an idea as to what the unlikely sources of errors are (e.g., evaporative losses from outside holding ponds may be a materials loss we cannot accurately account for). In the case of high concentrations of hazardous wastes, accurate measurements are needed to develop cost-effective waste-reduction options. It is possible that the material balance for a number of unit operations will need to be repeated. Again, continue to review, refine, and, where necessary, expand your database. The compilation of accurate and comprehensive data is essential for a successful P2 audit and subsequent waste-reduction action plan. Remember - you can t reduce what you don t know is therel... [Pg.378]

Three basic fluid contacting patterns describe the majority of gas-liquid mixing operations. These are (1) mixed gas/mixed liquid - a stirred tank with continuous in and out gas and liquid flow (2) mixed gas/batch mixed liquid - a stirred tank with continuous in and out gas flow only (3) concurrent plug flow of gas and liquid - an inline mixer with continuous in and out flow. For these cases the material balance/rate expressions and resulting performance equations can be formalized as ... [Pg.474]

Because the packed tower is a continuous contacting device as compared to the step-wise plate tower, performance capacity is expressed as the number of transfer units, N, the height of the transfer unit, H.T.U., and mass transfer coefficients K a and Kj a. Figure 9-68 identifies the key symbols and constant flow material balance. [Pg.343]

Differential and Integral Balances. Two types of material balances, differential and integral, are applied in analyzing chemical processes. The differential mass balance is valid at any instant in time, with each term representing a rate (i.e., mass per unit time). A general differential material balance may be written on any material involved in any transient process, including semibatch and unsteady-state continuous flow processes ... [Pg.333]

A special case of the above equation applies to a continuous steady-state flow process when all of the rate terms are independent of time and the accumulation term is zero. Thus, the differential material balance for any component i in such a process is given by... [Pg.333]

The material balance for cells in a continuous culture chemostat is defined as ... [Pg.93]

The simplified flow diagram of continuous filtration with stream lines of material balance is shown in Figure 9.3. Mass in is equal to mass out. [Pg.236]

Continuous in-line measurements and control of the mass material balance in the process, with automatic feedback to the reactants dosing devices (performed either by computerized system or by traditional flow control loops). [Pg.686]

Another kind of situation arises when it is necessary to take into account the long-range effects. Here, as a rule, attempts to obtain analytical results have not met with success. Unlike the case of the ideal model the equations for statistical moments of distribution of polymers for size and composition as well as for the fractions of the fragments of macromolecules turn out normally to be unclosed. Consequently, to determine the above statistical characteristics, the necessity arises for a numerical solution to the material balance equations for the concentration of molecules with a fixed number of monomeric units and reactive centers. The difficulties in solving the infinite set of ordinary differential equations emerging here can be obviated by switching from discrete variables, characterizing macromolecule size and composition, to continuous ones. In this case the mathematical problem may be reduced to the solution of one or several partial differential equations. [Pg.173]

Without recycle, the material balances on a series of processing steps can be carried out sequentially, taking each unit in turn the calculated flows out of one unit become the feeds to the next. If a recycle stream is present, then at the point where the recycle is returned the flow will not be known as it will depend on downstream flows not yet calculated. Without knowing the recycle flow, the sequence of calculations cannot be continued to the point where the recycle flow can be determined. [Pg.50]

Figure 4.2 shows a feed being separated into a vapor and liquid phase and being allowed to come to equilibrium. If the feed to the separator and the vapor and liquid products are continuous, then the material balance is described by Equations 4.57, 4.58 and 4.61x. If Kl is large relative to V/F (typically Kl > 10) in Equation 4.57, then2 ... [Pg.157]

There are a variety of limiting forms of equation 8.0.3 that are appropriate for use with different types of reactors and different modes of operation. For stirred tanks the reactor contents are uniform in temperature and composition throughout, and it is possible to write the energy balance over the entire reactor. In the case of a batch reactor, only the first two terms need be retained. For continuous flow systems operating at steady state, the accumulation term disappears. For adiabatic operation in the absence of shaft work effects the energy transfer term is omitted. For the case of semibatch operation it may be necessary to retain all four terms. For tubular flow reactors neither the composition nor the temperature need be independent of position, and the energy balance must be written on a differential element of reactor volume. The resultant differential equation must then be solved in conjunction with the differential equation describing the material balance on the differential element. [Pg.254]

Consider the schematic representation of a continuous flow stirred tank reactor shown in Figure 8.5. The starting point for the development of the fundamental design equation is again a generalized material balance on a reactant species. For the steady-state case the accumulation term in equation 8.0.1 is zero. Furthermore, since conditions are uniform throughout the reactor volume, the material balance may be... [Pg.270]

Continuous Stirred Tank Reactor (CSTR). The conversion degree of the azo-dye, the reaction volume (V) and the volumetric flow rate (Q) of the dye-bearing stream are related to each other through the material balance referred to the dye and extended to the reactor volume. Assuming an unstructured model for the biophase, the material balance yields... [Pg.111]

Consider a reaction represented by A +. . . - products taking place in a PFR. Since conditions may change continuously in the direction of flow, we choose a differential element of volume, dV, as a control volume, as shown at the top of Figure 2.4. Then the material balance for A around dk is, from equation 1.5-la (preceding equation 2.3-3) ... [Pg.34]

To obtain an expression for tj, we first derive the continuity equation governing steady-state diffusion of A through the pores of the particle. This is based on a material balance for A across the control volume consisting of the thin strip of width dx shown in Figure 8.10(a). We then solve the resulting differential equation to obtain the concentration profile for A through the particle (shown in Figure 8.10(b)), and, finally, use this result to obtain an expression for tj in terms of particle, reaction, and diffusion characteristics. [Pg.202]


See other pages where Material balance continuity is mentioned: [Pg.65]    [Pg.104]    [Pg.86]    [Pg.182]    [Pg.742]    [Pg.1296]    [Pg.1304]    [Pg.1658]    [Pg.369]    [Pg.376]    [Pg.19]    [Pg.83]    [Pg.233]    [Pg.571]    [Pg.205]    [Pg.102]    [Pg.266]    [Pg.93]    [Pg.253]    [Pg.368]    [Pg.60]    [Pg.174]    [Pg.227]   
See also in sourсe #XX -- [ Pg.189 ]




SEARCH



Material balance

Material balancing

© 2024 chempedia.info