Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass transverse

NMR is an important teclnhque for the study of flow and diflfiision, since the measurement may be made highly sensitive to motion without in any way influencing the motion under study. In analogy to many non-NMR-methods, mass transport can be visualized by imaging the distribution of magnetic tracers as a fiinction of time. Tracers may include paramagnetic contrast agents which, in particular, reduce the transverse... [Pg.1534]

In the transverse direction of the quadrupoles, an ion will oscillate among the poles in a complex fashion, depending on its mass, the voltages (U, V), and the frequency (to) of the alternating RF potential. By suitable choices of U, V, and to, it can be arranged that only ions of one mass will oscillate stably about the central axis in this case, all other ions will oscillate... [Pg.183]

A second important need for some guidance system lies in stray electric fields. Clearly, a sufficiently large potential arranged transversely to an ion beam can serve to deflect ions away from the intended direction. Such stray fields can be produced easily by sharp edges or points on the inside of a mass spectrometer and even more so in an ion guide itself. Considerable care is needed in the construction and design of mass spectrometers to reduce these effects to a minimum. [Pg.372]

Magnetic fields introduce hydromagnetic waves, which are transverse modes of ion motion and wave propagation that do not exist in the absence of an apphed B field. The first of these are Alfven, A, waves and their frequency depends on B and p, the mass density. Such waves move parallel to the apphed field having the following velocity ... [Pg.109]

A new chemical sensor based on surface transverse device has been developed (99) (see Sensors). It resembles a surface acoustic wave sensor with the addition of a metal grating between the tranducer and a different crystal orientation. This sensor operates at 250 mH2 and is ideally suited to measurements of surface-attached mass under fluid immersion. By immohi1i2ing atra2ine to the surface of the sensor device, the detection of atra2ine in the range of 0.06 ppb to 10 ppm was demonstrated. [Pg.248]

Axial-Flow Transverse-Momentum Mass Flowmeter. 10-19... [Pg.879]

General Principles There are two main types of mass flowmeters (1) the so-called true mass flowmeter, which responds directly to mass flow rate, and (2) the inferential mass flowmeter, which commonly measures volume flow rate aud flmd density separately. A variety of types of true mass flowmeters have been developed, including the following (a) the Maguus-effect mass flowmeter, (b) the axial-flow, transverse-momentum mass flowmeter, (c) the radial-flow, transverse-momentum mass flowmeter, (d) the gyroscopic transverse-momentum mass flowmeter, aud (e) the thermal mass flowmeter. Type b is the basis for several commercial mass flowmeters, one version of which is briefly described here. [Pg.897]

Axial-Flow Transverse-Momentum Mass Flowmeter This type is also referred to as an augiilar-momeutum mass flowmeter. One embodiment of its principle involves the use of axial flow through a driven impeller aud a turbine in series. The impeller imparts augiilar momentum to the fluid, which in turn causes a torque to be imparted... [Pg.897]

The Gaussian Plume Model is the most well-known and simplest scheme to estimate atmospheric dispersion. This is a mathematical model which has been formulated on the assumption that horizontal advection is balanced by vertical and transverse turbulent diffusion and terms arising from creation of depletion of species i by various internal sources or sinks. In the wind-oriented coordinate system, the conservation of species mass equation takes the following form ... [Pg.285]

For a clamped plate edge, the principal support mechanism is a boxy mass that restrains rotation about the edge of the plate (w,j( = 0) and motion transverse to the plate surface (w = 0). The four ways of supporting the boxy mass are analogous to the four ways for a simply supported edge and are shown in Appendix D. [Pg.285]

Naturally, there are two more Peclet numbers defined for the transverse direction dispersions. In these ranges of Reynolds number, the Peclet number for transverse mass transfer is 11, but the Peclet number for transverse heat transfer is not well agreed upon (121, 122). None of these dispersions numbers is known in the metal screen bed. A special problem is created in the monolith where transverse dispersion of mass must be zero, and the parallel dispersion of mass can be estimated by the Taylor axial dispersion theory (123). The dispersion of heat would depend principally on the properties of the monolith substrate. Often, these Peclet numbers for individual pellets are replaced by the Bodenstein numbers for the entire bed... [Pg.107]

In these equations x and y denote independent spatial coordinates T, the temperature Tib, the mass fraction of the species p, the pressure u and v the tangential and the transverse components of the velocity, respectively p, the mass density Wk, the molecular weight of the species W, the mean molecular weight of the mixture R, the universal gas constant A, the thermal conductivity of the mixture Cp, the constant pressure heat capacity of the mixture Cp, the constant pressure heat capacity of the species Wk, the molar rate of production of the k species per unit volume hk, the speciflc enthalpy of the species p the viscosity of the mixture and the diffusion velocity of the A species in the y direction. The free stream tangential and transverse velocities at the edge of the boundaiy layer are given by = ax and Vg = —ay, respectively, where a is the strain rate. The strain rate is a measure of the stretch in the flame due to the imposed flow. The form of the chemical production rates and the diffusion velocities can be found in (7-8). [Pg.406]

The geometry and structure of a bone consist of a mineralised tissue populated with cells. This bone tissue has two distinct structural forms dense cortical and lattice-like cancellous bone, see Figure 7.2(a). Cortical bone is a nearly transversely isotropic material, made up of osteons, longitudinal cylinders of bone centred around blood vessels. Cancellous bone is an orthotropic material, with a porous architecture formed by individual struts or trabeculae. This high surface area structure represents only 20 per cent of the skeletal mass but has 50 per cent of the metabolic activity. The density of cancellous bone varies significantly, and its mechanical behaviour is influenced by density and architecture. The elastic modulus and strength of both tissue structures are functions of the apparent density. [Pg.115]

As mentioned earlier, in curved channels a secondary flow pattern of two counter-rotating vortices is formed. Similarly to the situation depicted in Figrue 2.43, these vortices redistribute fluid volumes in a plane perpendicular to the main flow direction. Such a transversal mass transfer reduces the dispersion, a fact reflected in the dependence in Eq. (108) at large Dean numbers. For small Dean numbers, the secondary flow is negligible, and the dispersion in curved ducts equals the Taylor-Aris dispersion of straight ducts. [Pg.217]

Unal, C., K. Tuza, O. Bach, S. Neti, and J. C. Chen, 1991b, Convective Boiling in a Rod Bundle Transverse Variation of Vapor Superheat Temperature under Stabilized Post-CHF Conditions, Int. J. Heat Mass Transfer 34/1695-1706. (4)... [Pg.556]

Sirkar and Hanratty (S13) showed, by means of refined measurements using strip electrodes at different orientations with respect to the mean flow, that transverse velocity fluctuations play a significant part in the turbulent transport very close to the wall, and that the eddy diffusivity may well be dependent on the cube of the distance y+, leading to a Sc1/3 dependence of mass-transfer correlations, which is often found experimentally. [Pg.270]

Rao et al. (R5) and Raju et al. (R2) also investigated mass transfer at vibrating electrodes for low vibration frequencies (higher frequencies would cause cavitation). Mass transfer follows a laminar-type correlation both for a transverse vibration of a vertical cylinder and for a vertical plate vibrating parallel to the face. In the case of the plate, the Reynolds number is based on width, indicating the predominance of form drag. When vibrations take place perpendicular to the thickness, skin friction predominates and the Reynolds number is then preferably based on the equivalent diameter (total surface area divided by transverse perimeter). [Pg.273]


See other pages where Mass transverse is mentioned: [Pg.185]    [Pg.541]    [Pg.50]    [Pg.344]    [Pg.367]    [Pg.454]    [Pg.588]    [Pg.1925]    [Pg.112]    [Pg.492]    [Pg.214]    [Pg.212]    [Pg.520]    [Pg.106]    [Pg.110]    [Pg.118]    [Pg.119]    [Pg.120]    [Pg.58]    [Pg.358]    [Pg.362]    [Pg.464]    [Pg.468]    [Pg.526]    [Pg.37]    [Pg.117]    [Pg.217]    [Pg.475]    [Pg.261]    [Pg.262]    [Pg.41]    [Pg.406]    [Pg.14]   
See also in sourсe #XX -- [ Pg.292 ]




SEARCH



© 2024 chempedia.info