Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass transfer coefficients units

To use all of these equations, the heights of the transfer units or the mass transfer coefficients and must be known. Transfer data for packed columns are often measured and reported direcdy in terms of and and correlated in this form against and... [Pg.26]

Interfacial Contact Area and Approach to Equilibrium. Experimental extraction cells such as the original Lewis stirred cell (52) are often operated with a flat Hquid—Hquid interface the area of which can easily be measured. In the single-drop apparatus, a regular sequence of drops of known diameter is released through the continuous phase (42). These units are useful for the direct calculation of the mass flux N and hence the mass-transfer coefficient for a given system. [Pg.64]

R is rate of reaction per unit area, a is interfacial area per unit volume, S is solubiHty of solute in continuous phase, D is diffusivity of solute, k is rate constant, kj is mass-transfer coefficient, is concentration of reactive species, and Z is stoichiometric coefficient. When Dk is considerably greater (10 times) than Ra = aS Dk. [Pg.430]

The use of molal humidity as the mass-transfer driving force is conventional and convenient because of the development of humidity data for, especially, the air—water system. The mass-transfer coefficient must be expressed in consistent units. [Pg.97]

For consistency, clearance here is expressed in cm /s although the more common clinical units, and those used later in this chapter, are ml,/min. Combination and rearrangement of equations 6—8 allows clearance to be estimated from mass-transfer coefficient and vice versa the conditions of countercurrent flow with no dialysate recycling are shown below. [Pg.36]

Extrapolation of KgO data for absorption and stripping to conditions other than those for which the origin measurements were made can be extremely risky, especially in systems involving chemical reactions in the liquid phase. One therefore would be wise to restrict the use of overall volumetric mass-transfer-coefficient data to conditions not too far removed from those employed in the actual tests. The most reh-able data for this purpose would be those obtained from an operating commercial unit of similar design. [Pg.625]

In 1966, in a paper that now is considered a classic, Danckwerts and Gillham [Tmns. Inst. Chem. Eng., 44, T42 (1966)] showed that data taken in a small stirred-ceU laboratoiy apparatus could be used in the design of a packed-tower absorber when chemical reactions are involved. They showed that if the packed-tower mass-transfer coefficient in the absence of reaction (/cf) can be reproduced in the laboratory unit, then the rate of absorption in the l oratoiy apparatus will respond to chemical reactions in the same way as in the packed column even though the means of agitating the hquid in the two systems might be quite different. [Pg.1366]

According to this method, it is not necessaiy to investigate the kinetics of the chemical reactions in detail, nor is it necessary to determine the solubihties or the diffusivities of the various reactants in their unreacted forms. To use the method for scaling up, it is necessaiy independently to obtain data on the values of the interfacial area per unit volume a and the physical mass-transfer coefficient /c for the commercial packed tower. Once these data have been measured and tabulated, they can be used directly for scahng up the experimental laboratory data for any new chemic ly reac ting system. [Pg.1366]

Danckwerts and Gillham did not investigate the influence of the gas-phase resistance in their study (for some processes gas-phase resistance may be neglected). However, in 1975 Danckwerts and Alper [Trans. Tn.st. Chem. Eng., 53, 34 (1975)] showed that by placing a stirrer in the gas space of the stirred-cell laboratoiy absorber, the gas-phase mass-transfer coefficient fcc in the laboratoiy unit could be made identical to that in a packed-tower absorber. When this was done, laboratoiy data obtained for chemically reacting systems having a significant gas-side resistance coiild successfully be sc ed up to predict the performance of a commercial packed-tower absorber. [Pg.1366]

There are a number of different types of experimental laboratory units that could be used to develop design data for chemically reacting systems. Charpentier [ACS Symp. Sen, 72, 223-261 (1978)] has summarized the state of the art with respect to methods of scaUng up lab-oratoiy data and tabulated typical values of the mass-transfer coefficients, interfacial areas, and contact times to be found in various commercial gas absorbers as well as in currently available laboratoiy units. [Pg.1366]

Principles of Rigorous Absorber Design Danckwerts and Alper [Trans. Tn.st. Chem. Eng., 53, 34 (1975)] have shown that when adequate data are available for the Idnetic-reaciion-rate coefficients, the mass-transfer coefficients fcc and /c , the effective interfacial area per unit volume a, the physical solubility or Henry s-law constants, and the effective diffusivities of the various reactants, then the design of a packed tower can be calculated from first principles with considerable precision. [Pg.1366]

Three criteria for scale-up are that the laboratory and industrial units have the same mass-transfer coefficients /cg and E/cl and the same ratio of the specific interfacial surface and liquid holdup Tables 23-9 and 23-10 give order-of-magnitude values of some parameters that may be expected in common types of liquid/gas contactors. [Pg.2109]

Mass-transfer coefficients seem to vary as the 0.7 exponent on the power input per unit volume, with the dimensions of the vessel and impeller and the superficial gas velocity as additional factors. A survey of such correlations is made by van t Riet (Ind Eng. Chem Proc Des Dev., IS, 3.57 [1979]). Table 23-12 shows some of the results. [Pg.2111]

HTU = Height of a transfer unit, ft Kga = Overall gas mass-transfer coefficient, lb moles/(hr) (fF) (atm)... [Pg.96]

Hog, Hql = Height of transfer unit based on overall gas or liquid film coefficients, ft Gm, Ljn = Gas or liquid mass velocity, lb mols/(hr) (ft ) Kga, Kla = Gas or liquid mass transfer coefficients, consistent units... [Pg.102]

Kp, = Overall mass transfer coefficient, g/m s a = Surface area per unit volume of adsorbent particle, mVm ... [Pg.249]

Oxygen transfer rate (OTR) The product of volumetric oxygen transfer rate kj a and the oxygen concentration driving force (C - Cl), (ML T ), where Tl is the mass transfer coefficient based on liquid phase resistance to mass transfer (LT ), a is the air bubble surface area per unit volume (L ), and C and Cl are oxygen solubility and dissolved oxygen concentration, respectively. All the terms of OTR refer to the time average values of a dynamic situation. [Pg.905]

Because the packed tower is a continuous contacting device as compared to the step-wise plate tower, performance capacity is expressed as the number of transfer units, N, the height of the transfer unit, H.T.U., and mass transfer coefficients K a and Kj a. Figure 9-68 identifies the key symbols and constant flow material balance. [Pg.343]

Agitation of fermentation broth creates a uniform distribution of ah in the media. Once you mix a solution, you exert an energy into the system. Increasing power input reduces the bubble size and this in turn increases the interfacial area. Therefore the mass transfer coefficient would be a function of power input per unit volume of fermentation broth, which is also affected by the gas superficial velocity.2,3 The general correlation is expected to be as follows ... [Pg.26]

The above correlation is valid for a bioreactor size of less than 3000 litres and a gassed power per unit volume of 0.5-10 kW. For non-coalescing (non-sticky) air-electrolyte dispersion, the exponent of the gassed power per unit volume in the correlation of mass transfer coefficient changes slightly. The empirical correlation with defined coefficients may come from the experimental data with a well-defined bioreactor with a working volume of less than 5000 litres and a gassed power per unit volume of 0.5-10 kW. The defined correlation is ... [Pg.26]

The mass transfer coefficient is expected to relate gas power per unit volume and gas terminal velocity. Measurement of gas bubble velocity is troublesome in the experimental stage of aeration. Extensive research has been conducted for an explanation of the above correlation. Gas-liquid mass transfer in low viscosity fluids in agitated vessels has been reviewed and summarised as stated in (3.5.1.7)—(3.6.2) 3... [Pg.45]

The mass transfer coefficient KLa is constant the general correlation is considered by many as proportional to the power per unit volume with constant exponent, and gas superficial velocity to another constant power as shown below 1,2... [Pg.289]


See other pages where Mass transfer coefficients units is mentioned: [Pg.334]    [Pg.334]    [Pg.20]    [Pg.37]    [Pg.297]    [Pg.501]    [Pg.106]    [Pg.106]    [Pg.31]    [Pg.173]    [Pg.240]    [Pg.604]    [Pg.1191]    [Pg.1355]    [Pg.1356]    [Pg.1364]    [Pg.1424]    [Pg.1424]    [Pg.1474]    [Pg.256]    [Pg.319]    [Pg.23]    [Pg.39]    [Pg.223]    [Pg.239]    [Pg.251]    [Pg.24]    [Pg.27]    [Pg.45]    [Pg.46]   
See also in sourсe #XX -- [ Pg.16 , Pg.21 ]

See also in sourсe #XX -- [ Pg.25 ]

See also in sourсe #XX -- [ Pg.244 , Pg.246 , Pg.247 ]




SEARCH



Mass coefficient

Mass transfer coefficient

Mass unit

© 2024 chempedia.info