Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass spectrum reference spectra

The following scheme is suggested as a general approach to the interpretation of the mass spectrum. Each spectrum presents its own challenge and therefore too rigid adherence to any scheme is unwise. Reference should be made to the appropriate paragraph of this section for fuller details of each step. [Pg.373]

IR, cm 1 (medium) (reference) H-NMR, 8 (solvent) (reference) l3C-NMR (solvent) ( 8) Mass spectrum (reference)... [Pg.299]

Knowing and 2 by studying reference components, it becomes possible to calculate from the measurements of ion intensities found on the mass spectrum. [Pg.49]

PA, B2, the reactions leading to B2H can be monitored by the presence of this latter ion in the mass spectrum. The PA of B2 can quickly be narrowed down provided the reference values are well established. [Pg.1358]

This fragmentation is characteristic for a given substance, similar to a fingerprint, and is referred to as a mass spectrum. [Pg.13]

Positive-ion electrospray mass spectrum of human hemoglobin (a) as initially obtained with all the measured masses, and (b) after calculation of true mass, as in Figure 8.3. The spectrum transforms into two main peaks representing the main alpha and beta chains of hemoglobin with accurate masses as given. This transformation is fnlly automated. The letters A, B, C refer to the three chains of hemoglobin. Thus, A13 means the alpha chain with 13 protons added. [Pg.59]

Assuming that the mass spectrometer has sufficient mass resolution, the computer can prepare accurate ma.ss data on the m/z values from an unknown substance. To prepare that data, the system must acquire the mass spectrum of a known reference substance for which accurate masses for its ions are already known, and the computer must have a stored table of these reference masses. The computer is programmed first to inspect the newly acquired data from the reference compound in comparison with its stored reference spectrum if all is well, the system then acquires data from the unknown substance. By comparison and interpolation techniques using the known reference... [Pg.323]

Peaks at m/e 113 and 85 have been found in the mass spectra (12) of other O-isopropylidene ketals of sugars, as well as in Figure 7. Since these shift to m/e 119 and to m/e 88 and 91 in the mass spectrum of 10a as they did for the d6-analogs in Reference 12, the structures, 17, 18, and 19 from Reference 12 are shown as possible explanations. The peak at m/e 85 (91) could alternatively be from m/e 113 (119) by loss of carbon monoxide (28 mass units) from the six-membered-ring of structure 17b. [Pg.232]

To distinguish between azobenzene and benzophenone, assuming reference spectra are not available for these compounds, it is a good idea to examine the mass spectra of aromatic ketones, such as acetophenone, butyrophenone, diphenyldiketone, and so forth. Complete identification is assured by obtaining or synthesizing the suspected component and analyzing it on the GC/MS system under the same GC conditions. If the retention time and the mass spectrum agree, then the identification is confirmed. [Pg.23]

The quadrupole ion-trap, usually referred to simply as the ion-trap, is a three-dimensional quadrupole. This type of analyser is shown schematically in Figure 3.5. It consists of a ring electrode with further electrodes, the end-cap electrodes, above and below this. In contrast to the quadrupole, described above, ions, after introduction into the ion-trap, follow a stable (but complex) trajectory, i.e. are trapped, until an RF voltage is applied to the ring electrode. Ions of a particular m/z then become unstable and are directed toward the detector. By varying the RF voltage in a systematic way, a complete mass spectrum may be obtained. [Pg.58]

Library searching The use of a computer to compare a mass spectrum to be identified with large numbers of reference spectra. [Pg.307]

Principles and Characteristics Mass spectrometry can provide the accurate mass determination in a direct measurement mode. For a properly calibrated mass spectrometer the mass accuracy should be expected to be good to at least 0.1 Da. Accurate mass measurements can be made at any resolution (resolution matters only when separating masses). For polymer/additive deformulation the nominal molecular weight of an analyte, as determined with an accuracy of 0.1 Da from the mass spectrum, is generally insufficient to characterise the sample, in view of the small mass differences in commercial additives. With the thousands of additives, it is obvious that the same nominal mass often corresponds to quite a number of possible additive types, e.g. NPG dibenzoate, Tinuvin 312, Uvistat 247, Flexricin P-1, isobutylpalmitate and fumaric acid for m = 312 Da see also Table 6.7 for m = 268 Da. Accurate mass measurements are most often made in El mode, since the sensitivity is high, and reference mass peaks are readily available (using various fluorinated reference materials). Accurate mass measurements can also be made in Cl... [Pg.355]

Figure 9 (A) electron impact mass spectrum of the peak at 9.97 min (see Figure 8) (B) MS of a reference standard of triclosan. Figure 9 (A) electron impact mass spectrum of the peak at 9.97 min (see Figure 8) (B) MS of a reference standard of triclosan.
Bushnell and co-workers [117] employed extensive molecular modelling to understand the nature of cis and trans isomerism in tetrahedral p-phenylene vinylene oligomers, and to aid the interpretation of time of flight mass spectrometry and ion mobility studies. Molecules such as T4R, shown in Figure 18, with four equivalent arms can be used to control the crystallinity in thin films. The authors reported the observation of a species in the mass spectrum resulting from the loss of an arm from the central carbon. This species will be referred to as P4R. [Pg.714]

Interestingly, we were intrigued by the ESI mass spectrum of the compound, as the observed base peak consisted of [M-S02+Na]+. This led us to explore a thermal retro-Diels-Alder reaction that could afford the desired enone 69. It is noteworthy that the chemistry of cyclic enol-sulfites would appear to be an under-explored area with a few references reporting their isolation being found [57]. At last, we were also able to prepare epoxy ketone 70 from 69 in three steps, albeit epoxidation did not take place unless the TES group was removed. Spartan models reaffirmed our initial conformational assessment of enone 69 and epoxy ketone 70, which contain sp3-hybridized C8a and s/r-hybridized C8b (p s e u d o-. v/r - h y b r i d i zed C8b for 70) at the AB-ring junction (Fig. 8.12) and displayed the desired twisted-boat conformation in A-ring. [Pg.201]

Mass spectra of reference vegetable and fossil waxes were also acquired by DI EI-MS with a Shimadzu QP 2010 mass spectrometer equipped with a quadrupole analyser (Figures 4.7 4.9). The mass spectrum of camauba is dominated by a base peak at m/z 57. At low mass range the pattern observed is that already discussed for other waxes with peaks spaced every 28 mass units corresponding to the fragmentation of long linear carbon chains. Two other areas of interest may be mentioned one between m/z 250 and 450... [Pg.109]

Several historic wax samples were analysed successfully with GALDI-MS. It was found that a group of eighteen white seals from medieval documents (thirteenth to fourteenth century) from the archive of the Canton of Lucerne (Switzerland) all mainly consisted of beeswax. For example, the mass spectrum of a white seal from 1377 (inventory no. URK636/12663) is shown in Figure 5.14b. The typical pattern of beeswax, as described for the reference sample, can be clearly recognised. An additional peak at m/z 303 may be caused by abietic acid in the form of the molecule cation (C2oH3o02, MW 302), as found for rosin (see Section 5.3.2). This hints at the use of a diterpenoid resin, which was a common hardener for beeswax. A more detailed discussion of the composition of medieval white wax seals has been published elsewhere [57]. [Pg.151]

The El source has been the most widely used ion source over the past 60 years and continues to be the method of choice for the analysis (either qualitative or quantitative) of small- to medium-sized volatile organic compounds. The inherent reproducibility of the mass spectra has enabled the assembly of large spectral libraries. Computers associated with current generation instruments can efficiently (in a few seconds) search an unknown mass spectrum against tens of thousands of reference spectra in order to aid in the identification of an analyte. The general scheme of an El source includes the introduction of the vaporized analyte molecules into the ionization chamber, exposure of those molecules... [Pg.329]

Fig. 11.3. Electron ionization and methane Cl mass spectra of toluene. The key features of the respective mass spectra are labeled. Spectral interpretation is based on recognition and understanding of these key features and how they correlate with structural elements of the analyte molecule of interest. The signal representing the most abundant ion in a mass spectrum is referred to as the base peak, and may or may not be the molecular ion peak (which carries the molecular mass information). Cl spectra provide confirmation of molecular mass in situations where the El signal for the molecular ion (M+ ) is weak or absent. The Cl mass spectrum provides reliable molecular mass information, but relatively little structural information (low abundance of the fragment ions). Compare with Fig. 11.4. Fig. 11.3. Electron ionization and methane Cl mass spectra of toluene. The key features of the respective mass spectra are labeled. Spectral interpretation is based on recognition and understanding of these key features and how they correlate with structural elements of the analyte molecule of interest. The signal representing the most abundant ion in a mass spectrum is referred to as the base peak, and may or may not be the molecular ion peak (which carries the molecular mass information). Cl spectra provide confirmation of molecular mass in situations where the El signal for the molecular ion (M+ ) is weak or absent. The Cl mass spectrum provides reliable molecular mass information, but relatively little structural information (low abundance of the fragment ions). Compare with Fig. 11.4.

See other pages where Mass spectrum reference spectra is mentioned: [Pg.14]    [Pg.436]    [Pg.60]    [Pg.27]    [Pg.37]    [Pg.54]    [Pg.61]    [Pg.103]    [Pg.76]    [Pg.353]    [Pg.44]    [Pg.92]    [Pg.111]    [Pg.138]    [Pg.270]    [Pg.292]    [Pg.435]    [Pg.233]    [Pg.231]    [Pg.161]    [Pg.329]    [Pg.345]    [Pg.353]    [Pg.361]    [Pg.372]   
See also in sourсe #XX -- [ Pg.467 ]




SEARCH



Mass reference spectrum

Spectrum reference

© 2024 chempedia.info