Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass spectrometry features

In this chapter, the main analytical techniques and the methods currently employed in industrial and research laboratories for the analysis of important classes of additives are reviewed. The use of both gas chromatographic and liquid chromatographic methods coupled with mass spectrometry features prominently. Such methodology enables the sensitive and specific detection of many types of organic additives in polymeric materials to parts per billion (jig/kg) levels. Much of the development of these methods has been undertaken as part of research into the migration or extraction of species from food-contact and medical materials [5-7], This chapter also includes some discussion on the analysis of residual monomers and solvents. [Pg.562]

Figure 4.1 The growth in presentations at the annual conference of the American Society for Mass Spectrometry featuring all LC/MS applications (LC/MS) and LC/MS applications in drug development (LC/MS Pharma). (Courtesy of Milestone Development Services, Newtown, Pa., USA.)... Figure 4.1 The growth in presentations at the annual conference of the American Society for Mass Spectrometry featuring all LC/MS applications (LC/MS) and LC/MS applications in drug development (LC/MS Pharma). (Courtesy of Milestone Development Services, Newtown, Pa., USA.)...
Searching. A tmncation feature ( ) that allows word variation, eg, "mass spectrometry or mass spectroscopy" is used. Tide searching is accomphshed by using the added modifier "/ti" to bring up only tides. Commands to retrieve information generally use a protocol such as type-set number/format choice/number of records. [Pg.458]

The behaviour under electron impact of IV- and C-trimethylsilylpyrazoles (mono-, di-and tri-substituted) has been studied by Birkofer et al. (740MS 8)347). Loss of a methyl radical followed by loss of HCN is the most common fragmentation feature of these compounds. When more than one trimethylsilyl group is present, a neutral fragment CaHgSi is expelled. Mass spectrometry of pyrazolium salts has been studied by Larsen etal. (8i OMS377, 830MS52). [Pg.204]

Laser ionization mass spectrometry or laser microprobing (LIMS) is a microanalyt-ical technique used to rapidly characterize the elemental and, sometimes, molecular composition of materials. It is based on the ability of short high-power laser pulses (-10 ns) to produce ions from solids. The ions formed in these brief pulses are analyzed using a time-of-flight mass spectrometer. The quasi-simultaneous collection of all ion masses allows the survey analysis of unknown materials. The main applications of LIMS are in failure analysis, where chemical differences between a contaminated sample and a control need to be rapidly assessed. The ability to focus the laser beam to a diameter of approximately 1 mm permits the application of this technique to the characterization of small features, for example, in integrated circuits. The LIMS detection limits for many elements are close to 10 at/cm, which makes this technique considerably more sensitive than other survey microan-alytical techniques, such as Auger Electron Spectroscopy (AES) or Electron Probe Microanalysis (EPMA). Additionally, LIMS can be used to analyze insulating sam-... [Pg.586]

Mass Spectrometry A number of features make fflnines easily identifiable by mass spectrometry. [Pg.953]

To understand the circumstances in which particular features of mass spectrometry, such as high-resolution measurements, MS-MS and cone-voltage fragmentation, selected-ion monitoring and selected-decomposition monitoring, may be nsed to address particular analytical problems. [Pg.186]

Assuming the sequence of the parent protein is known, it is not necessary to redetermine the whole sequence merely to locate, and sequence, that/those polypeptide(s) that have undergone modification. This can be done by examination of the total-ion-current (TIC) trace before and after protein hydrolysis for the appearance of new polypeptides or to use mass spectrometry methodology to locate those polypeptides that contain certain structural features. Examples are provided here of both methodologies. [Pg.227]

State-of-the-art TOF-SIMS instruments feature surface sensitivities well below one ppm of a mono layer, mass resolutions well above 10,000, mass accuracies in the ppm range, and lateral and depth resolutions below 100 nm and 1 nm, respectively. They can be applied to a wide variety of materials, all kinds of sample geometries, and to both conductors and insulators without requiring any sample preparation or pretreatment. TOF-SIMS combines high lateral and depth resolution with the extreme sensitivity and variety of information supplied by mass spectrometry (all elements, isotopes, molecules). This combination makes TOF-SIMS a unique technique for surface and thin film analysis, supplying information which is inaccessible by any other surface analytical technique, for example EDX, AES, or XPS. [Pg.33]

These special features are explained by an interaction between the proton and one of the water molecules, which is not merely electrostatic but also covalent. This yields a new chemical species, the hydroxonium ion, HjO. The existence of such ions was demonstrated in the gas phase by mass spectrometry and in the solid phase by X-ray diffraction and nuclear magnetic resonance. The H -H20 bond has an energy of 712kJ/mol, which is almost two-thirds of the total proton hydration energy. [Pg.111]

Cotter, R.J., The New Time-of-Flight Mass Spectrometry, Anal. Chem. News Features, 71(13), 445A, 1999. [Pg.68]

Mass spectrometry has a number of features and advantages that can make it a very valuable tool for the identification of organic additives in polymers (Table 6.2). The range of products that can be studied is limited by the ionisation method used and the performance of the mass spectrometer. Mass spectrometry... [Pg.349]

This chapter deals mainly with (multi)hyphenated techniques comprising wet sample preparation steps (e.g. SFE, SPE) and/or separation techniques (GC, SFC, HPLC, SEC, TLC, CE). Other hyphenated techniques involve thermal-spectroscopic and gas or heat extraction methods (TG, TD, HS, Py, LD, etc.). Also, spectroscopic couplings (e.g. LIBS-LIF) are of interest. Hyphenation of UV spectroscopy and mass spectrometry forms the family of laser mass-spectrometric (LAMS) methods, such as REMPI-ToFMS and MALDI-ToFMS. In REMPI-ToFMS the connecting element between UV spectroscopy and mass spectrometry is laser-induced REMPI ionisation. An intermediate state of the molecule of interest is selectively excited by absorption of a laser photon (the wavelength of a tuneable laser is set in resonance with the transition). The excited molecules are subsequently ionised by absorption of an additional laser photon. Therefore the ionisation selectivity is introduced by the resonance absorption of the first photon, i.e. by UV spectroscopy. However, conventional UV spectra of polyatomic molecules exhibit relatively broad and continuous spectral features, allowing only a medium selectivity. Supersonic jet cooling of the sample molecules (to 5-50 K) reduces the line width of their... [Pg.428]

Smith and Udseth [154] first described SFE-MS in 1983. Direct fluid injection (DFT) mass spectrometry (DFT-MS, DFI-MS/MS) utilises supercritical fluids for solvation and transfer of materials to a mass-spectrometer chemical ionisation (Cl) source. Extraction with scC02 is compatible with a variety of Cl reagents, which allow a sensitive and selective means for ionising the solute classes of interest. If the interfering effects of the sample matrix cannot be overcome by selective ionisation, techniques based on tandem mass spectrometry can be used [7]. In these cases, a cheaper and more attractive alternative is often to perform some form of chromatography between extraction and detection. In SFE-MS, on-line fractionation using pressure can be used to control SCF solubility to a limited extent. The main features of on-line SFE-MS are summarised in Table 7.20. It appears that the direct introduction into a mass spectrometer of analytes dissolved in supercritical fluids without on-line chromatography has not actively been pursued. [Pg.451]

Table 8.60 shows the main features of GD-MS. Whereas d.c.-GD-MS is commercial, r.f.-GD-MS lacks commercial instruments, which limits spreading. Glow discharge is much more reliable than spark-source mass spectrometry. GD-MS is particularly valuable for studies of alloys and semiconductors [371], Detection limits at the ppb level have been reported for GD-MS [372], as compared to typical values of 10 ppm for GD-AES. The quantitative performance of GD-MS is uncertain. It appears that 5 % quantitative results are possible, assuming suitable standards are available for direct comparison of ion currents [373], Sources of error that may contribute to quantitative uncertainty include sample inhomogeneity, spectral interferences, matrix differences and changes in discharge conditions. [Pg.651]

The HPLC-MS/MS assay was also successfully applied to the measurement of UV-induced dimeric pyrimidine photoproducts [123, 124]. The latter lesions were released from DNA as modified dinucleoside monophosphates due to resistance of the intra-dimer phosphodiester group to the exonuclease activity during the hydrolysis step [125, 126]. The hydrolyzed photoproducts exhibit mass spectrometry and chromatographic features that allow simultaneous quantification of the three main classes of photolesions, namely cyclobutane dimers, (6-4) photoproducts, and Dewar valence isomers, for each of the four possible bipyrimidine sequences. It may be added that these analyses are coupled to UV detection of normal nucleosides in order to correct for the amount of DNA in the sample and obtain a precise ratio of oxidized bases or dimeric photoproducts to normal nucleosides. [Pg.28]

Figure 6.3 Differentiation of Vibrio parahaemolyticiis strains by region of clinical outbreak, showing the correlation of a mass spectral feature (near dotted line), the region of clinical outbreak, and the presence or absence of the TDH gene in control organisms. (From a linear TOF, reported at the American Society for Mass Spectrometry in... Figure 6.3 Differentiation of Vibrio parahaemolyticiis strains by region of clinical outbreak, showing the correlation of a mass spectral feature (near dotted line), the region of clinical outbreak, and the presence or absence of the TDH gene in control organisms. (From a linear TOF, reported at the American Society for Mass Spectrometry in...

See other pages where Mass spectrometry features is mentioned: [Pg.1331]    [Pg.1828]    [Pg.295]    [Pg.541]    [Pg.143]    [Pg.21]    [Pg.287]    [Pg.606]    [Pg.169]    [Pg.139]    [Pg.33]    [Pg.449]    [Pg.47]    [Pg.238]    [Pg.112]    [Pg.142]    [Pg.267]    [Pg.498]    [Pg.378]    [Pg.397]    [Pg.463]    [Pg.652]    [Pg.165]    [Pg.41]    [Pg.175]    [Pg.177]    [Pg.118]    [Pg.207]    [Pg.13]    [Pg.304]    [Pg.155]    [Pg.162]    [Pg.38]   
See also in sourсe #XX -- [ Pg.166 , Pg.464 ]




SEARCH



Mass spectrometry desirable features

Mass spectrometry general features

Spectral Features in Cationization Mass Spectrometry

© 2024 chempedia.info