Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass species involved

Processes in which solids play a rate-determining role have as their principal kinetic factors the existence of chemical potential gradients, and diffusive mass and heat transfer in materials with rigid structures. The atomic structures of the phases involved in any process and their thermodynamic stabilities have important effects on drese properties, since they result from tire distribution of electrons and ions during tire process. In metallic phases it is the diffusive and thermal capacities of the ion cores which are prevalent, the electrons determining the thermal conduction, whereas it is the ionic charge and the valencies of tire species involved in iron-metallic systems which are important in the diffusive and the electronic behaviour of these solids, especially in the case of variable valency ions, while the ions determine the rate of heat conduction. [Pg.148]

General Material Balances. According to the law of conservation of mass, the total mass of an isolated system is invariant, even in the presence of chemical reactions. Thus, an overall material balance refers to a mass balance performed on the entire material (or contents) of the system. Instead, if a mass balance is made on any component (chemical compound or atomic species) involved in the process, it is termed a component (or species) material balance. The general mass balance equation has the following form, and it can be applied on any material in any process. [Pg.332]

Although the Lewis cell was introduced over 50 years ago, and has several drawbacks, it is still used widely to study liquid-liquid interfacial kinetics, due to its simplicity and the adaptable nature of the experimental setup. For example, it was used recently to study the hydrolysis kinetics of -butyl acetate in the presence of a phase transfer catalyst [21]. Modeling of the system involved solving mass balance equations for coupled mass transfer and reactions for all of the species involved. Further recent applications of modified Lewis cells have focused on stripping-extraction kinetics [22-24], uncatalyzed hydrolysis [25,26], and partitioning kinetics [27]. [Pg.335]

To ensure that the detector electrode used in MEMED is a noninvasive probe of the concentration boundary layer that develops adjacent to the droplet, it is usually necessary to employ a small-sized UME (less than 2 /rm diameter). This is essential for amperometric detection protocols, although larger electrodes, up to 50/rm across, can be employed in potentiometric detection mode [73]. A key strength of the technique is that the electrode measures directly the concentration profile of a target species involved in the reaction at the interface, i.e., the spatial distribution of a product or reactant, on the receptor phase side. The shape of this concentration profile is sensitive to the mass transport characteristics for the growing drop, and to the interfacial reaction kinetics. A schematic of the apparatus for MEMED is shown in Fig. 14. [Pg.348]

The industrial application of Plasma Induced Chemical Vapour Deposition (PICVD) of amorphous and microcrystalline silicon films has led to extensive studies of gas phase and surface processes connected with the deposition process. We are investigating the time response of the concentration of species involved in the deposition process, namely SiH4, Si2H6, and H2 by relaxation mass spectroscopy and SiH2 by laser induced fluorescence. [Pg.337]

The operational interpretation of rA, as opposed to this verbal definition, does depend on the circumstances of the reaction.1 This is considered further in Chapter 2 as a consequence of the application of the conservation of mass to particular situations. Furthermore, rA depends on several parameters, and these are considered in Section 1.4.2. The rate with respect to any other species involved in the reacting system may be related to rA directly through reaction stoichiometry for a simple, single-phase system, or it may require additional kinetics information for a complex system. This aspect is considered in Section 1.4.4, following a preliminary discussion of the measurement of rate of reaction in Section 1.4.3. [Pg.4]

All chemical change is subject to the law of conservation of mass, including the conservation of the chemical elements making up the species involved, which is called chemical stoichiometry (from Greek relating to measurement (-metry) of an element (stoichion)). For each element in a closed reacting system, there is a conservation equa-... [Pg.6]

Analyses of the defect chemistry and thermodynamics of non-stoichiometric phases that are predominately ionic in nature (i.e. halides and oxides) are most often made using quasi-chemical reactions. The concentrations of the point defects are considered to be low, and defect-defect interactions as such are most often disregarded, although defect clusters often are incorporated. The resulting mass action equations give the relationship between the concentrations of point defects and partial pressure or chemical activity of the species involved in the defect reactions. [Pg.296]

Mass spectrometry is based upon the separation of charged ionic species by their mass-to-charge ratio, m/z. Within the general chemical context however, we are not used to taking into concern the isotopes of the elemental species involved in a reaction. The molecular mass of tribromomethane, CHBrs, would therefore be calculated to 252.73 g mol using the relative atomic masses of the elements as listed in most periodic tables. In mass spectrometry we have to leave this custom behind. Because the mass spectrometer does not separate by elements but by isotopic mass, there is no signal at m/z 252.73 in the mass spectmm of tribromomethane. Instead, major peaks are present at m/z 250, 252, 254 and 256 accompanied by some minor others. [Pg.67]

Even if the analyte is chemically perfectly pure it represents a mixture of different isotopic compositions, provided it is not composed of monoisotopic elements only. Therefore, a mass spectrum is normally composed of superimpositions of the mass spectra of all isotopic species involved. [11] The isotopic distribution or isotopic pattern of molecules containing one chlorine or bromine atom is listed in Table 3.1. But what about molecules containing two or more di-isotopic or even polyisotopic elements While it may seem, at the first glance, to complicate the interpretation of mass spectra, isotopic patterns are in fact an ideal source of analytical information. [Pg.74]

Unfortunately, the method is not straightforward. It is necessary to consider a number of other factors, such as preferential depletion of a species from the surface of the sample, reaction of the gas with the cell itself, and the effusion of the gas which does not always follow ideal behaviour. Recently much work has been done to improve accuracy through better understanding of the method itself, and much early work pre-1960 is now considered to be unreliable (Komarek 1972). The method also relies on knowledge of the molecular weight of the vapour species and there may be more than one species involved. To this end the method is now often linked with mass spectroscopy (Komarek 1972, Kubaschewski et al. 1993) so that composition of the gas is better understood. [Pg.86]

We must note that we are dealing here not with static molecules, as no molecule is stationary even at the absolute zero of temperature, but rather with non-reacting molecules. This will be extended, however, to include mass spectrometry and the reactions which proceed within the mass spectrometry tube, as these are used to define the structure of the parent molecule. Obviously, though, such reactions have an importance of their own which is not neglected. Details of species involved as reactive intermediates, which may exist long enough for definition by physical techniques, will also be considered. For example, the section on ESR (Section 2.04.3.7) necessarily looks at unpaired electron species such as neutral or charged radicals, while that on UV spectroscopy (Section 2.04.3.3) considers the structure of electronically excited heterocyclic molecules. [Pg.101]

So, if there are mass-transport limitations on the concentrations of the species involved in the reactions at the two electrodes, expressions for ric j and tlc 2 must be introduced. Thus, one can write... [Pg.653]

Chemical kinetics govern the rate at which chemical species are created or destroyed via reactions. Chapter 9 discussed chemical kinetics of reactions in the gas phase. Reactions were assumed to follow the law of mass action. Rates are determined by the concentrations of the chemical species involved in the reaction and an experimentally determined rate coefficient (or rate constant) k. [Pg.401]

If the entire mass flux of a species k flows out via a surface reaction, then UI = 1. If, on the other hand, none of the species k reacts at the surface, then UI = 0. Presumably the utilization index for any species involved in the deposition process should be high. If it is not, then the cost paid for its creation is not fully recouped. [Pg.699]

In case (i), the chemical reaction is too slow to contribute to the mass transfer of the electroactive species involved. In case (iii), the chemical reaction is so fast that it is virtually in equilibrium and the reaction is controlled by diffusion of the electroactive and the electroinactive component together. Case (ii) leads to some simplification resulting, for example, in a linear relationship between — jrv2 and —... [Pg.334]

Carry out mole-to-mole, mass-to-mole, and mass-to-mass calculations for any two species involved in a chemical reaction, Example L.l. [Pg.138]

The rates of the forward ( f) and reverse (kT) reactions together with the mass transport parameters of the species involved in the transduction mechanism are important for the response of the sensor. Introducing reaction rates into the definition of the equilibrium constant introduces the notion of time. Thus, for the same value of K we can have fast and slow, forward and reverse reactions, and therefore fast or slow equilibrium. The equilibrium constant (K) is expressed in terms of activities. [Pg.3]

By considering the chemical reactions of reaction scheme (3.VI), the differential equation system that describes the mass transport of the (k + 1) species involved is... [Pg.186]

Three of the species involve deuterium mass spectrometry is ideal, and can also be used for H20. [Pg.17]

For each kinetic scheme, the relevant mathematical model is given by the mass balances written for the four species involved. In detail, for the scheme (3.55), the mass balance yields... [Pg.57]

The mass balances for all the species involved, for both the tube and shell side of the system shown in Figure 13.2 (shell-side feed configuration, system with cylindrical symmetry) can be written as ... [Pg.294]


See other pages where Mass species involved is mentioned: [Pg.25]    [Pg.80]    [Pg.24]    [Pg.139]    [Pg.155]    [Pg.5]    [Pg.123]    [Pg.258]    [Pg.259]    [Pg.378]    [Pg.275]    [Pg.20]    [Pg.571]    [Pg.161]    [Pg.595]    [Pg.97]    [Pg.163]    [Pg.266]    [Pg.444]    [Pg.32]    [Pg.17]    [Pg.31]    [Pg.196]    [Pg.154]    [Pg.364]    [Pg.39]    [Pg.43]   
See also in sourсe #XX -- [ Pg.80 ]




SEARCH



© 2024 chempedia.info