Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass forced convection

Tank Cells. A direct extension of laboratory beaker cells is represented in the use of plate electrodes immersed into a lined, rectangular tank, which may be fitted with a cover for gas collection or vapor control. The tank cell, which is usually undivided, is used in batch or semibatch operations. The tank cell has the attraction of being both simple to design and usually inexpensive. However, it is not the most suitable for large-scale operation or where forced convection is needed. Rotating cylinders or rotating disks have been used to overcome mass-transfer problems in tank cells. An example for electroorganic synthesis is available (46). [Pg.90]

Experimental gas-solid mass-transfer data have been obtained for naphthalene in CO9 to develop correlations for mass-transfer coefficients [Lim et al., Am. Chem. Soc. Symp. Ser, 406, 379 (1989)]. The data were correlated over a wide range of conditions with the following equation for combined natural and forced convection ... [Pg.2003]

An important mixing operation involves bringing different molecular species together to obtain a chemical reaction. The components may be miscible liquids, immiscible liquids, solid particles and a liquid, a gas and a liquid, a gas and solid particles, or two gases. In some cases, temperature differences exist between an equipment surface and the bulk fluid, or between the suspended particles and the continuous phase fluid. The same mechanisms that enhance mass transfer by reducing the film thickness are used to promote heat transfer by increasing the temperature gradient in the film. These mechanisms are bulk flow, eddy diffusion, and molecular diffusion. The performance of equipment in which heat transfer occurs is expressed in terms of forced convective heat transfer coefficients. [Pg.553]

In problems of forced convection, it is usually the cooling mass flow that has to be found to determine the temperature difference between the cooling substance and the wall for a given heat flow. In turbulent pipe flow, the iol-low ing equation is valid ... [Pg.115]

In this section the correlations used to determine the heat and mass transfer rates are presented. The convection process may be either free or forced convection. In free convection fluid motion is created by buoyancy forces within the fluid. In most industrial processes, forced convection is necessary in order to achieve the most economic heat exchange. The heat transfer correlations for forced convection in external and internal flows are given in Tables 4.8 and 4.9, respectively, for different conditions and geometries. [Pg.115]

Loop Tests Loop test installations vary widely in size and complexity, but they may be divided into two major categories (c) thermal-convection loops and (b) forced-convection loops. In both types, the liquid medium flows through a continuous loop or harp mounted vertically, one leg being heated whilst the other is cooled to maintain a constant temperature across the system. In the former type, flow is induced by thermal convection, and the flow rate is dependent on the relative heights of the heated and cooled sections, on the temperature gradient and on the physical properties of the liquid. The principle of the thermal convective loop is illustrated in Fig. 19.26. This method was used by De Van and Sessions to study mass transfer of niobium-based alloys in flowing lithium, and by De Van and Jansen to determine the transport rates of nitrogen and carbon between vanadium alloys and stainless steels in liquid sodium. [Pg.1062]

R2. Reynolds, J. M., Burnout in forced convection nucleate boiling of water, Mass. Inst. Inst. Technol. Tech. Rept. No. 10, NONR-1848 (39) (July 1957). [Pg.292]

An attempt has been made by Johnson and co-workers to relate such theoretical results with experimental data for the absorption of a single carbon dioxide bubble into aqueous solutions of monoethanolamine, determined under forced convection conditions over a Reynolds number range from 30 to 220. The numerical results were found to be much higher than the measured values for noncirculating bubbles. The numerical solutions indicate that the mass-transfer rate should be independent of Peclet number, whereas the experimentally measured rates increase gradually with increasing Peclet number. The discrepancy is attributed to the experimental technique, where-... [Pg.352]

Fig. 10. Numerical solutions of the forced-convection mass-transfer equation for the case of irreversible first-order chemical reaction [after Johnson et al. (J4)] (Solid lines— rigid spheres dashed lines—circulating gas bubbles). Fig. 10. Numerical solutions of the forced-convection mass-transfer equation for the case of irreversible first-order chemical reaction [after Johnson et al. (J4)] (Solid lines— rigid spheres dashed lines—circulating gas bubbles).
Acikalin T, Wait S, Garimella S, Raman A (2004) Experimental investigation of the thermal performance of piezoelectric fans. Heat Transfer Eng 25 4-14 Adams TM, Abdel-Khalik SI, Jeter SM, Qureshi ZH (1998) An experimental investigation of single-phase forced convection in micro-channels. Int J Heat Mass Transfer 41 851-857 Adams TM, Dowling ME, Abdel-Khalik SI, Jeter SM (1999) Applicability of traditional turbulent single phase forced convection correlations to non-circular micro-channels. Int J Heat Mass Transfer 42 4411 415... [Pg.92]

Katto Y, Ohno H (1984) An improved version of the generalized correlation of critical heat flux for the forced convective boihng in uniformly heated vertical tubes. Int J Heat Mass Transfer 27(9) 1641-1648... [Pg.95]

Lin Q, Jiang F, Wang X-Q, Han Z, Tai Y-C, Lew J, Ho C-M (2000) MEMS Thermal Shear-Stress Sensors Experiments, Theory and Modehng, Technical Digest, Solid State Sensors and Actuators Workshop, Hilton Head, SC, 4—8 June 2000, pp 304-307 Lin TY, Yang CY (2007) An experimental investigation of forced convection heat transfer performance in micro-tubes by the method of hquid crystal thermography. Int. J. Heat Mass Transfer 50 4736-4742... [Pg.95]

Wang BX, Peng XF (1994) Experimental investigation of liquid forced-convection heat transfer through micro-channels. Int J Heat Mass Transfer 37 73-82 Wasekar VM, Manglik RM (2002) The influence of additive molecular weight and ionic nature on the pool boiling performance of aqueous surfactant solutions. Int J Heat Mass Transfer 45 483-493... [Pg.97]

Adams TM, Abdel-Khalik SI, Jeter SM, Qureshi ZH (1998) An experimental investigation of single-phase forced convection in micro-channels. Int J Heat Mass Transfer 41 851-857... [Pg.188]

The heat transfer coefficient of boiling flow through a horizontal rectangular channel with low aspect ratio (0.02-0.1) was studied by Lee and Lee (2001b). The mass flux in these experiments ranged from 50 to 200 kg/m s, maximum heat flux was 15 kW/m, and the quality ranged from 0.15 to 0.75, which corresponds to annular flow. The experimental data showed that under conditions of the given experiment, forced convection plays a dominant role. [Pg.301]

The detail experimental study of flow boiling heat transfer in two-phase heat sinks was performed by Qu and Mudawar (2003b). It was shown that the saturated flow boiling heat transfer coefficient in a micro-channel heat sink is a strong function of mass velocity and depends only weakly on the heat flux. This result, as well as the results by Lee and Lee (2001b), indicates that the dominant mechanism for water micro-channel heat sinks is forced convective boiling but not nucleate boiling. [Pg.301]

Klausner JF, Mei R, Bernard D, Zeng L (1993) Vapor bubble departure in forced convection boiling. Int J Heat Mass Transfer 36 651-661... [Pg.321]

Yen T-H, Kasagi N, Suzuki Y (2003) Forced convective boiling heat transfer in micro-tubes at low mass and heat fluxes. Int J Multiphase Flow 29 1771-1792 Yu W, France DM, Wambsganss MW, Hull JR (2002) Two-phase pressure drop, boiling heat transfer, and critical heat flux to water in a small-diameter horizontal tube. Int J Multiphase Flow 28 927-941... [Pg.325]

Katto Y (1978) A generalized correlation for critical heat flux for the forced convection boihng in vertical uniformly heated round tubes. Int J Heat Mass Transfer 21 1527-1542 Khrustalev D, Faghri A (1996) Fluid flow effect in evaporation from liquid-vapor meniscus. ASME J Heat Mass Transfer 118 725-747... [Pg.398]

Peng XF, Wang BX (1993) Forced convection and flow boiling through micro-channels Int J Heat Mass Transfer 36 3421-3427... [Pg.399]

Peng, C. F., Wang, B. X., Forced convection and flow boiling heat transfer for liquid flowing through microchannels, Int. J. Heat Mass Transfer 36 (1993) 3421-3427. [Pg.251]

Shah, R. K., Laminar flow friction and forced convection heat transfer in ducts of arbitrary geometry, Int. ). Heat Mass Transfer 18 (1975) 849-842. [Pg.252]


See other pages where Mass forced convection is mentioned: [Pg.1933]    [Pg.16]    [Pg.89]    [Pg.2038]    [Pg.6]    [Pg.222]    [Pg.426]    [Pg.214]    [Pg.231]    [Pg.409]    [Pg.10]    [Pg.141]    [Pg.142]    [Pg.191]    [Pg.191]    [Pg.320]    [Pg.336]    [Pg.343]    [Pg.344]    [Pg.376]    [Pg.434]    [Pg.463]    [Pg.464]    [Pg.367]    [Pg.649]    [Pg.312]    [Pg.326]   
See also in sourсe #XX -- [ Pg.34 ]




SEARCH



Forced convection

Forced convection mass transfer

Forced convective mass transport

Forced-convection mass-transfer coefficient

Mass convection

Mass force

Mass transport forced convection

Mixed Forced and Natural Convection Mass Transfer

© 2024 chempedia.info