Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Manufacturing catalysis

This example illustrates a subtle control of a chemical reaction by a delicate manipulation of tire stereochemical environment around a metal centre dictated by tire selection of tire ligands. This example hints at tire subtlety of nature s catalysts, tire enzymes, which are also typically stereochemically selective. Chiral catalysis is important in biology and in tire manufacture of chemicals to regulate biological functions, i.e., phannaceuticals. [Pg.2704]

Useful thermosetting resins are obtained by interaction of furfural with phenol. The reaction occurs under both acidic and basic catalysis. Other large uses of furfural together with phenol are in the manufacture of resin-bonded grinding wheels and coated abrasives (5). [Pg.79]

Furfuryl alcohol is comparable to kerosene or No. 1 fuel oil in flammabiUty, the Tag Closed Cup flash point is 170°F. In the presence of concentrated mineral acids or strong organic acids, furfuryl alcohol reacts with explosive violence. Therefore, precautions should be taken to avoid contact of such materials with the alcohol. Caution is also recommended to avoid over-catalysis in the manufacture of furfuryl alcohol resins. [Pg.80]

Friedel-Crafts alkylation using alkenes has important industrial appHcations. The ethylation of benzene with ethylene to ethylbenzene used in the manufacture of styrene, is one of the largest scale industrial processes. The reaction is done under the catalysis of AlCl in the presence of a proton source, ie, H2O, HCl, etc, although other catalysts have also gained significance. [Pg.551]

Catalyst systems used in the commercial synthesis of aromatic petroleum resins are very similar to those systems used in the manufacture of C-5 and C-5—C-9 type resins. The principal catalysts are AlCl and BF and their respective complexes. BF catalysis usually yields resins with improved color over AlCl catalyzed systems. [Pg.354]

Catalysts. Mercury is or has been used in the catalysis (qv) of various plastics, including polyurethane [26778-67-6] poly(vinyl chloride) [9002-86-2] and poly(vinyl acetate) [9003-20-7]. Most poly(vinyl chloride) and poly(vinyl acetate) is manufactured by processes that do not use mercury (3). [Pg.110]

Because the peroxodisulfate salts are all made electrochemicaHy, the electrical energy cost is a significant part of thek manufacturing cost. The 1994 world capacity for peroxodisulfate salts was about 75,000 metric tons, valued at about 30 x 10 . The principal appHcations are in polymerization catalysis and the market broadly tracks the plastics business. The Caro s acid business is difficult to quantify because the product itself is not commercial but made on-site from purchased hydrogen peroxide. [Pg.99]

Many, but not all, reactor configurations are discussed. Process design, catalyst manufacture, thermodynamics, design of experiments (qv), and process economics, as well as separations, the technologies of which often are appHcable to reactor technology, are discussed elsewhere in the Eniyclopedia (see Catalysis Separation Thermodynamics). [Pg.504]

Ma.nufa.cture. The principal manufacturers of A/-vinyl-2-pyrrohdinone are ISP and BASF. Both consume most of their production captively as a monomer for the manufacture of PVP and copolymers. The vinylation of 2-pyrrohdinone is carried out under alkaline catalysis analogous to the vinylation of alcohols. 2-Pyrrohdinone is treated with ca 5% potassium hydroxide, then water and some pyrroHdinone are distilled at reduced pressure. A ca 1 1 mixture (by vol) of acetylene and nitrogen is heated at 150—160°C and ca 2 MPa (22 atm). Fresh 2-pyrrohdinone and catalyst are added continuously while product is withdrawn. Conversion is limited to ca 60% to avoid excessive formation of by-products. The A/-vinyl-2-pyrrohdinone is distilled at 70-85°C at 670 Pa (5 mm Hg) and the yield is 70-80% (8). [Pg.523]

These siUca-supported catalysts demonstrate the close connections between catalysis in solutions and catalysis on surfaces, but they are not industrial catalysts. However, siUca is used as a support for chromium complexes, formed either from chromocene or chromium salts, that are industrial catalysts for polymerization of a-olefins (64,65). Supported chromium complex catalysts are used on an enormous scale in the manufacture of linear polyethylene in the Unipol and Phillips processes (see Olefin polymers). The exact stmctures of the surface species are still not known, but it is evident that there is a close analogy linking soluble and supported metal complex catalysts for olefin polymerization. [Pg.175]

Isotactic polypropylenes produced by metallocene catalysis are now being produced by a number of different manufacturers and because different systems are used there is some variation in properties. Typically however such materials have similar density, hardness and tensile strength to conventional homopolymers but differ in having... [Pg.259]

Advances in catalysis will result in the development of high yield, low waste manufacturing processes. Catalysts frequently allow the use of less reactive raw materials and intermediates, and less severe processing conditions. High yields and improved... [Pg.44]

A catalyst is a substance whose presence increases the rate of a chemical reaction. The exercise of using catalysts is called catalysis. Today the vast majority of all commercially important chemical reactions involve catalysts, especially in the fields of energy production, petrochemicals manufacture, pharmaceuticals synthesis, and environmental protection. [Pg.223]

Serious research in catalytic reduction of automotive exhaust was begun in 1949 by Eugene Houdry, who developed mufflers for fork lift trucks used in confined spaces such as mines and warehouses (18). One of the supports used was the monolith—porcelain rods covered with films of alumina, on which platinum was deposited. California enacted laws in 1959 and 1960 on air quality and motor vehicle emission standards, which would be operative when at least two devices were developed that could meet the requirements. This gave the impetus for a greater effort in automotive catalysis research (19). Catalyst developments and fleet tests involved the partnership of catalyst manufacturers and muffler manufacturers. Three of these teams were certified by the California Motor Vehicle Pollution Control Board in 1964-65 American Cyanamid and Walker, W. R. Grace and Norris-Thermador, and Universal Oil Products and Arvin. At the same time, Detroit announced that engine modifications by lean carburation and secondary air injection enabled them to meet the California standard without the use of catalysts. This then delayed the use of catalysts in automobiles. [Pg.62]

The major problem of these diazotizations is oxidation of the initial aminophenols by nitrous acid to the corresponding quinones. Easily oxidized amines, in particular aminonaphthols, are therefore commonly diazotized in a weakly acidic medium (pH 3, so-called neutral diazotization) or in the presence of zinc or copper salts. This process, which is due to Sandmeyer, is important in the manufacture of diazo components for metal complex dyes, in particular those derived from l-amino-2-naphthol-4-sulfonic acid. Kozlov and Volodarskii (1969) measured the rates of diazotization of l-amino-2-naphthol-4-sulfonic acid in the presence of one equivalent of 13 different sulfates, chlorides, and nitrates of di- and trivalent metal ions (Cu2+, Sn2+, Zn2+, Mg2+, Fe2 +, Fe3+, Al3+, etc.). The rates are first-order with respect to the added salts. The highest rate is that in the presence of Cu2+. The anions also have a catalytic effect (CuCl2 > Cu(N03)2 > CuS04). The mechanistic basis of this metal ion catalysis is not yet clear. [Pg.27]

The historical development of chemically electrodes is briefly outlined. Following recent trends, the manufacturing of modified electrodes is reviewed with emphasis on the more recent methods of electrochemical polymerization and on new ion exchanging materials. Surface derivatized electrodes are not treated in detail. The catalysis of electrochemical reactions is treated from the view of theory and of practical application. Promising experimental results are given in detail. Finally, recent advances of chemically modified electrodes in sensor techniques and in the construction of molecular electronics are given. [Pg.50]

Zeoliltes seem particularly suited to take over the job and in fact are doing so already for aromatic alkylation. Thus in ethylbenzene manufacture (from benzene and ethene) modern processes apply zeolites (H-ZSM-5, H-Y) as the catalyst, substituting conventional processes based on AICI3 or BF3-on-alumina catalysis. Substantial waste reductions are achieved. [Pg.209]

Le Page, J.F., Cosyns, )., and Courty, P. (1987) Applied Heterogeneous Catalysis Design, Manufacture, Use of Solid Catalysts, Technip, Paris, p. 84. [Pg.50]


See other pages where Manufacturing catalysis is mentioned: [Pg.210]    [Pg.160]    [Pg.210]    [Pg.600]    [Pg.3]    [Pg.210]    [Pg.160]    [Pg.210]    [Pg.600]    [Pg.3]    [Pg.476]    [Pg.283]    [Pg.477]    [Pg.200]    [Pg.82]    [Pg.137]    [Pg.137]    [Pg.106]    [Pg.385]    [Pg.387]    [Pg.202]    [Pg.161]    [Pg.193]    [Pg.194]    [Pg.205]    [Pg.114]    [Pg.2094]    [Pg.8]    [Pg.290]    [Pg.1148]    [Pg.223]    [Pg.227]    [Pg.74]    [Pg.79]    [Pg.56]    [Pg.166]    [Pg.182]    [Pg.163]   
See also in sourсe #XX -- [ Pg.30 ]




SEARCH



© 2024 chempedia.info