Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mannich acceptor

Chiral amines can react with so-called Mannich donors such as ketones or aldehydes. The resulting chiral enamines wiU then attack a Mannich acceptor, usually a prochiral aldimine, thereby introducing one or two chiral centers in the Mannich product. This usually is a P-aminoaldehyde or P-aminoketone, optionally substituted at the a-position. Inspired by their work on proline-catalyzed asymmetric aldol reactions [1], the List group envisioned that the related Mannich reactions might also be carried out with a catalytic amount of an enantiomerically pure chiral amine. This led in 2000 to the first direct catalytic asymmetric organocatalyzed Mannich reaction, catalyzed by L-proline (1, Scheme 5.1) [2],... [Pg.344]

Not much later, Cdrdova and List almost simultaneously reported extensive studies on the use of N-Boc imines as Mannich acceptors. The Cordova group reported that... [Pg.350]

Methyl vinyl ketone 2 tends to polymerize, especially in the presence of a strong base the yield of annulation product is therefore often low. A methyl vinyl ketone precursor, e.g. 6, is often employed, from which the Michael acceptor 2 is generated in situ, upon treatment with a base. The quaternary ammonium salt 6 can be obtained by reaction of the tertiary amine 5, which in turn is prepared from acetone, formaldehyde and diethylamine in a Mannich reaction. [Pg.241]

As with aldol and Mukaiyama addition reactions, the Mannich reaction is subject to enantioselective catalysis.192 A catalyst consisting of Ag+ and the chiral imino aryl phosphine 22 achieves high levels of enantioselectivity with a range of N-(2-methoxyphenyljimines.193 The 2-methoxyphenyl group is evidently involved in an interaction with the catalyst and enhances enantioselectivity relative to other A-aryl substituents. The isopropanol serves as a proton source and as the ultimate acceptor of the trimethyl silyl group. [Pg.142]

Although imines are less electrophilic than carbonyl compounds, they are also more readily activated by acids or hydrogen bonding. For this reason, Mannich reactions are often faster than the corresponding aldol reactions. It is not even necessary to use preformed imines. In a typical three-component Mannich reaction, the acceptor imine is generated from an aromatic or otherwise protected primary amine. [Pg.51]

The first asymmetric enamine-catalyzed Mannich reactions were described by List in 2000 [208]. Paralleling the development of the enamine-catalyzed aldol reactions, the first asymmetric Mannich reactions were catalyzed by proline, and a range of cyclic and acyclic aliphatic ketones were used as donors (Schemes 24 and 25). In contrast to the aldol reaction, however, most Mannich reactions are syn selective. This is presumably due to the larger size of the imine acceptor, forcing the imine and the enamine to approach each other in a different manner than is possible with aldehyde acceptors (Scheme 23). [Pg.51]

The aza-Michael reaction yields, complementary to the Mannich reaction, P-amino carbonyl compounds. If acrylates are applied as Michael acceptors, P-alanine derivatives such as 64 and 65 are obtained. The aza-Michael reaction can be catalyzed by Bronsted acids or different metal ions. Good results are also obtained with FeCl3, as shown in Scheme 8.29. The addition of HNEt2 to ethyl acrylate (41f), for example, requires 10mol% of the catalyst and a reaction time of almost 2 days [94], The addition of piperidine to a-amino acrylate 41g is much faster and yields a,P-diaminocarboxylic acid derivative 65 [95]. [Pg.235]

Surprisingly, the catalytic potential of proline (1) in asymmetric aldol reactions was not explored further until recently. List et al. reported pioneering studies in 2000 on intermolecular aldol reactions [14, 15]. For example, acetone can be added to a variety of aldehydes, affording the corresponding aldols in excellent yields and enantiomeric purity. The example of iso-butyraldehyde as acceptor is shown in Scheme 1.4. In this example, the product aldol 13 was obtained in 97% isolated yield and with 96% ee [14, 15]. The remarkable chemo- and enantioselectivity observed by List et al. triggered massive further research activity in proline-catalyzed aldol, Mannich, Michael, and related reactions. In the same year, MacMillan et al. reported that the phenylalanine-derived secondary amine 5 catalyzes the Diels-Alder reaction of a,/>-un saturated aldehydes with enantioselectivity up to 94% (Scheme 1.4) [16]. This initial report by MacMillan et al. was followed by numerous further applications of the catalyst 5 and related secondary amines. [Pg.5]

In conclusion, this new organocatalytic direct asymmetric Mannich reaction is an efficient means of obtaining optically active //-amino carbonyl compounds. It is worthy of note that besides the enantioselective process, enantio- and diastereose-lective Mannich reactions can also be performed, which makes synthesis of products bearing one or two stereogenic centers possible. Depending on the type of acceptor or donor, a broad range of products with a completely different substitution pattern can be obtained. The range of these Mannich products comprises classic / -amino ketones and esters as well as carbonyl-functionalized a-amino acids, and -after reduction-y-amino alcohols. [Pg.108]

The corresponding /i-amino aldehydes are reduced in situ and the corresponding amino alcohols are isolated in good yield with up to >99 % ee. The Mannich reactions proceed with excellent chemoselectivity and inline formation occurs with the acceptor aldehyde at a faster rate than C-C bond-formation. Moreover, the one-pot three-component direct asymmetric cross-Mannich reaction enables aliphatic aldehydes to serve as acceptors. The absolute stereochemistry of the reaction was determined by synthesis and reveled that L-proline provides syn /i-amino aldehydes with (S) stereochemistry of the amino group. In addition, the proline-catalyzed direct asymmetric Mannich-type reaction has been connected to one-pot tandem cyanation and allylation reaction in THF and aqueous media affording functional a-amino acid derivatives [39, 42]. [Pg.369]

Scheme 2.1 The enamine catalytic cycle. An enamine derived from an amine- or amino acid-catalyst can react with a variety of electrophiles. The aldehyde and ketone reactants that form enamines and act as nucleophiles are often described as donors . Aldehyde and imine reactants that serve as electrophiles are described as acceptors for aldol and Mannich reactions, respectively. Ketones also serve as acceptors for aldol reactions. Scheme 2.1 The enamine catalytic cycle. An enamine derived from an amine- or amino acid-catalyst can react with a variety of electrophiles. The aldehyde and ketone reactants that form enamines and act as nucleophiles are often described as donors . Aldehyde and imine reactants that serve as electrophiles are described as acceptors for aldol and Mannich reactions, respectively. Ketones also serve as acceptors for aldol reactions.
S)-Proline-catalyzed aldehyde donor reactions were first studied in Michael [21] and Mannich reactions (see below), and later in self-aldol and in cross-aldol reactions. (S)-Proline-catalyzed self-aldol and cross-aldol reactions of aldehydes are listed in Table 2.6 [22-24]. In self-aldol reactions, the reactant aldehyde serves as both the aldol donor and the acceptor whereas in cross-aldol reactions, the donor aldehyde and acceptor aldehyde are different. [Pg.25]

S)-Proline also catalyzed Mannich reactions in a three-component (donor aldehyde, 4-methoxyaniline, arylaldehyde) protocol - that is, without preformation of imine (Table 2.14) [71b, 82]. (For experimental details see Chapter 14.2.2). This three-component format also afforded the syn-Mannich products in good yields with high diastereoselectivity and enantioselectivities when slow addition of donor aldehyde and/or formation of the imine prior to addition of donor aldehyde was used at a lower reaction temperature, such —20 °C. Reactivity of benzaldehyde and of N-PMP-imine of benzaldehyde as acceptors was compared in the... [Pg.45]

The Mannich reaction is a close relative of the aldol, whereby an imine replaces the aldehyde acceptor. Proline has been demonstrated to be an excellent catalyst of the Mannich reaction, inducing high enantiomeric excess, as shown in Table 6.13. ° " Pertinent to this discussion is that the stereochemical outcome of the proline-catalyzed Mannich reaction is opposite to that of the proline-catalyzed aldol reaction. [Pg.421]

The reactions of allenic as well as of acetylenic Michael acceptors with sulfur ylides usually afford vinylogously stabilized ylides in place of the expected three-membered ring products This is due to the rapid proton shift in the zwitterionic intermediates. The in situ generation of the requisite Michael acceptor may be accomplished by utilizing masked enones, namely, the Mannich bases (equation 78). Since the oxosulfonium salts undergo... [Pg.336]

In accordance with the generally accepted mechanism ofthe MBH reaction, the aza MBH reaction involves, formally, a sequence of Michael addition, Mannich type reaction, and (3 elimination. A commonly accepted mechanism is depicted in Scheme 13.2. A reversible conjugate addition of the nucleophilic catalyst to the Michael acceptor generates an enolate, which can intercept the acylimine to afford the second zvdtterionic intermediate. A proton shift from the a carbon atom to the P amide followed by P elimination then affords the aza M BH adduct with concurrent regeneration of the catalyst [5]. [Pg.398]

Stereochemical control in the double conjugate addition Tandem Reactions as Polymerisation Terminated by Cyclisation The MIMIRC sequence with vinylphosphonium salts Tuning the MIMIRC sequence with different Michael acceptors Heterocycles by Tandem Conjugate Additions Tandem conjugate addition and Mannich reaction Tandem Conjugate Addition and Aldol Reaction... [Pg.863]


See other pages where Mannich acceptor is mentioned: [Pg.241]    [Pg.7]    [Pg.8]    [Pg.10]    [Pg.398]    [Pg.241]    [Pg.7]    [Pg.8]    [Pg.10]    [Pg.398]    [Pg.40]    [Pg.244]    [Pg.328]    [Pg.51]    [Pg.359]    [Pg.361]    [Pg.363]    [Pg.365]    [Pg.52]    [Pg.62]    [Pg.84]    [Pg.286]    [Pg.40]    [Pg.135]    [Pg.240]    [Pg.244]    [Pg.185]    [Pg.186]    [Pg.87]    [Pg.274]    [Pg.444]    [Pg.370]    [Pg.1491]    [Pg.51]    [Pg.144]    [Pg.498]    [Pg.40]   
See also in sourсe #XX -- [ Pg.344 , Pg.350 ]




SEARCH



© 2024 chempedia.info