Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymerisation termination

In this type of polymerisation propagation is not by radical but by either a carbonium ion (in cationic polymerisations) or by a carbanion (in anionic polymerisations). In anionic polymerisation, termination does not take place unless we add a transfer agent. [Pg.234]

In the absence of transfer agent, Polymer chains with active, ends which are known as living polymers can be synthesised. In case of cationic polymerisations, termination step is very slow. Ionic reactions are largely affected by solvents used. [Pg.234]

Although in controlled radical polymerisation, termination reactions cannot be excluded completely, they are limited in their extent and consequently the molecular weight is controlled, the polydispersity index is small and functionalities can be attached to the macromolecules. These features are indicative of the realisation of well-defined polymer architectures such as block copolymers, starshaped and comb-shaped copolymers. [Pg.3]

Stereochemical control in the double conjugate addition Tandem Reactions as Polymerisation Terminated by Cyclisation The MIMIRC sequence with vinylphosphonium salts Tuning the MIMIRC sequence with different Michael acceptors Heterocycles by Tandem Conjugate Additions Tandem conjugate addition and Mannich reaction Tandem Conjugate Addition and Aldol Reaction... [Pg.863]

Dental repair materials face the problem that the dentin below the composite fillings is actively decomposed by secondary caries and extracellular proteases. To address this problem, poly(2-methyloxazoline), which contains a biocidal and polymerisable terminal, will be explored as an additive for a commercial dental adhesive. [Pg.286]

Keywords chain transfer radical polymerisation termination kinetics (polym.)... [Pg.12]

The ADMET polymerisation reaction is a special type of olefin metathesis used to polymerise terminal dienes to polyenes (Scheme 5.9). [Pg.92]

Propagation takes place by insertion of additional styrene monomers between the carbanion and counterion. Under very pure conditions including the absence of water and oxygen, propagation can proceed indefinitely or until all the monomer is consumed. For this reason, anionic polymerisation is sometimes called living polymerisation. In anionic polymerisation, termination occurs only by the deliberately added oxygen, carbon dioxide, methanol or water into the reaction medium as shown in Reaction 6.5. [Pg.177]

Termination is similar to anionic polymerisation termination and transfer to counter ion is represented in Reaction 6.8. [Pg.178]

In this limit, termination within the particle is rate determining. An important implication of termination being diffusion controlled (and hence chain-length dependent) is that, in conventional free-radical polymerisation, termination events are dominated by termination between a mobile short chain (formed in an emulsion polymerisation by entry of a z-mer, by re-entry of an exited radical or by transfer to monomer) and a long, relatively immobile one. This is known as short-long termination . [Pg.58]

The newly formed short-chain radical A then quickly reacts with a monomer molecule to create a primary radical. If subsequent initiation is not fast, AX is considered an inhibitor. Many have studied the influence of chain-transfer reactions on emulsion polymerisation because of the interesting complexities arising from enhanced radical desorption rates from the growing polymer particles (64,65). Chain-transfer reactions are not limited to chain-transfer agents. Chain-transfer to monomer is ia many cases the main chain termination event ia emulsion polymerisation. Chain transfer to polymer leads to branching which can greatiy impact final product properties (66). [Pg.26]

The unsaturation present at the end of the polyether chain acts as a chain terminator ia the polyurethane reaction and reduces some of the desired physical properties. Much work has been done ia iadustry to reduce unsaturation while continuing to use the same reactors and hoi ding down the cost. In a study (102) usiag 18-crown-6 ether with potassium hydroxide to polymerise PO, a rate enhancement of approximately 10 was found at 110°C and slightly higher at lower temperature. The activation energy for this process was found to be 65 kj/mol (mol ratio, r = 1.5 crown ether/KOH) compared to 78 kj/mol for the KOH-catalysed polymerisation of PO. It was also feasible to prepare a PPO with 10, 000 having narrow distribution at 40°C with added crown ether (r = 1.5) (103). The polymerisation rate under these conditions is about the same as that without crown ether at 80°C. [Pg.352]

Emulsion Polymerization. Emulsion SBR was commercialised and produced in quantity while the theory of the mechanism was being debated. Harkins was among the earliest researchers to describe the mechanism (16) others were Mark (17) and Elory (18). The theory of emulsion polymerisation kinetics by Smith and Ewart is still vaUd, for the most part, within the framework of monomers of limited solubiUty (19). There is general agreement in the modem theory of emulsion polymerisation that the process proceeds in three distinct phases, as elucidated by Harkins (20) nucleation (initiation), growth (propagation), and completion (termination). [Pg.495]

The requirements for a polymerisation to be truly living are that the propagating chain ends must not terminate during polymerisation. If the initiation, propagation, and termination steps are sequential, ie, all of the chains are initiated and then propagate at the same time without any termination, then monodisperse (ie, = 1.0) polymer is produced. In general, anionic polymerisation is the only mechanism that yields truly living styrene... [Pg.518]

Anionic polymerisation techniques aie one of many ways to synthesise a special class of block copolymers, lefeiied to as star block copolymers (eq. 25) (33). Specifically, a "living" SB block is coupled with a silyl haUde coupling agent. The term living polymerisation refers to a chain polymerisation that proceeds in the absence of termination or transfer reactions. [Pg.180]

The terminal double bond is active with respect to polymerisation, whereas the internal unsaturation remains in the resulting terpolymer as a pendent location for sulfur vulcanisation. The polymer is poly(ethylene- (9-prop5iene- (9-l,4-hexadiene) [25038-37-3]. [Pg.503]

Fig. 22.1. (a) The ethylene molecule or monomer (b) the monomer in the activated state, ready to polymerise with others (<)-(f) the ethylene polymer ("polyethylene") the chain length is limited by the addition of terminators like —OH. The DP is the number of monomer units in the chain. [Pg.229]

Addition polymerisation is effected by the activation of the double bond of a vinyl monomer, thus enabling it to link up to other molecules. It has been shown that this reaction occurs in the form of a chain addition process with initiation, propagation and termination steps. [Pg.24]

Monomer molecules, which have a low but finite solubility in water, diffuse through the water and drift into the soap micelles and swell them. The initiator decomposes into free radicals which also find their way into the micelles and activate polymerisation of a chain within the micelle. Chain growth proceeds until a second radical enters the micelle and starts the growth of a second chain. From kinetic considerations it can be shown that two growing radicals can survive in the same micelle for a few thousandths of a second only before mutual termination occurs. The micelles then remain inactive until a third radical enters the micelle, initiating growth of another chain which continues until a fourth radical comes into the micelle. It is thus seen that statistically the micelle is active for half the time, and as a corollary, at any one time half the micelles contain growing chains. [Pg.28]

In a simple free-radical-initiated addition polymerisation the principal reactions involved are (assuming termination by combination for simplicity)... [Pg.29]

The number average degree of polymerisation x is defined as the average number of monomer units per polymer chain. Therefore if termination is by disproportionation r = jc, but if by combination r = x. [Pg.30]

In many technical polymerisations transfer reactions to modifier, solvent, monomer and even initiator may occur. In these cases whereas the overall propagation rate is unaffected the additional ways of terminating a growing chain will cause a reduction in the degree of polymerisation. [Pg.30]

An increase in the rate of radical production in emulsion polymerisation will reduce the molecular weight since it will increase the frequency of termination. An increase in the number of particles will, however, reduce the rate of entry of radicals into a specific micelle and increase molecular weight. Thus at constant initiator concentration and temperature an increase in micelles (in effect in soap concentration) will lead to an increase in molecular weight and in rate of conversion. [Pg.33]

In the absence of impurities there is frequently no termination step in anionic polymerisations. Hence the monomer will continue to grow until all the monomer is consumed. Under certain conditions addition of further monomer, even after an interval of several weeks, will eause the dormant polymerisation process to proceed. The process is known as living polymerisation and the products as living polymers. Of particular interest is the fact that the follow-up monomer may be of a different species and this enables block copolymers to be produced. This technique is important with certain types of thermoplastic elastomer and some rather specialised styrene-based plastics. [Pg.36]

A further feature of anionic polymerisation is that, under very carefully controlled eonditions, it may be possible to produee a polymer sample which is virtually monodisperse, i.e. the molecules are all of the same size. This is in contrast to free-radical polymerisations which, because of the randomness of both chain initiation and termination, yield polymers with a wide molecular size distribution, i.e. they are said to be polydisperse. In order to produce monodisperse polymers it is necessary that the following requirements be met ... [Pg.36]

A mass of polymer will contain a large number of individual molecules which will vary in their molecular size. This will occur in the case, for example, of free-radically polymerised polymers because of the somewhat random occurrence of ehain termination reactions and in the case of condensation polymers because of the random nature of the chain growth. There will thus be a distribution of molecular weights the system is said to be poly disperse. [Pg.40]

There is much evidence that weak links are present in the chains of most polymer species. These weak points may be at a terminal position and arise from the specific mechanism of chain termination or may be non-terminal and arise from a momentary aberration in the modus operandi of the polymerisation reaction. Because of these weak points it is found that polyethylene, polytetrafluoroethylene and poly(vinyl chloride), to take just three well-known examples, have a much lower resistance to thermal degradation than low molecular weight analogues. For similar reasons polyacrylonitrile and natural rubber may degrade whilst being dissolved in suitable solvents. [Pg.96]


See other pages where Polymerisation termination is mentioned: [Pg.108]    [Pg.870]    [Pg.871]    [Pg.226]    [Pg.263]    [Pg.108]    [Pg.870]    [Pg.871]    [Pg.226]    [Pg.263]    [Pg.1014]    [Pg.58]    [Pg.176]    [Pg.219]    [Pg.332]    [Pg.352]    [Pg.363]    [Pg.436]    [Pg.496]    [Pg.498]    [Pg.516]    [Pg.483]    [Pg.515]    [Pg.37]    [Pg.26]    [Pg.32]    [Pg.39]   
See also in sourсe #XX -- [ Pg.320 ]

See also in sourсe #XX -- [ Pg.320 ]

See also in sourсe #XX -- [ Pg.99 ]

See also in sourсe #XX -- [ Pg.25 ]




SEARCH



Addition polymerisation without chain termination

Chain-Growth Polymerisation with Termination

Chain-Growth Polymerisation without Termination

Free radical chain polymerisation termination

Polymerisation termination stage

Termination, free radical polymerisation

Vinyl polymerisation termination

© 2024 chempedia.info