Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Magnitude of

Figure 1 shows second virial coefficients for four pure fluids as a function of temperature. Second virial coefficients for typical fluids are negative and increasingly so as the temperature falls only at the Boyle point, when the temperature is about 2.5 times the critical, does the second virial coefficient become positive. At a given temperature below the Boyle point, the magnitude of the second virial coefficient increases with... [Pg.29]

Fortunately, however, the technique used here does not depend on the magnitude of the variances, but only on their ratios. If estimates of the magnitudes of the variances are wrong but the ratios are correct, the residuals display the random behavior shown in Figure 3. However, the magnitudes of these deviations are then not consistent with the estimated variances. [Pg.106]

Such step-limiting is often helpful because the direction of correction provided by the Newton-Raphson procedure, that is, the relative magnitudes of the elements of the vector J G, is very frequently more reliable than the magnitude of the correction (Naphtali, 1964). In application, t is initially set to 1, and remains at this value as long as the Newton-Raphson correotions serve to decrease the norm (magnitude) of G, that is, for... [Pg.116]

Equations (7-8) and (7-9) are then used to calculate the compositions, which are normalized and used in the thermodynamic subroutines to find new equilibrium ratios,. These values are then used in the next Newton-Raphson iteration. The iterative process continues until the magnitude of the objective function 1g is less than a convergence criterion, e. If initial estimates of x, y, and a are not provided externally (for instance from previous calculations of the same separation under slightly different conditions), they are taken to be... [Pg.121]

PRCG cols 21-30 the maximum allowable change in any of the parameters when LMP = 1, default value is 1000. Limiting the change in the parameters prevents totally unreasonable values from being attained in the first several iterations when poor initial estimates are used. A value of PRCG equal to the magnitude of that anticipated for the parameters is usually appropriate. [Pg.223]

Although this is generally the sequence in which the five actions would be considered, this sequence will not always be correct. The best sequence in which to consider the five actions will depend on the process. The magnitude of effect each action will have on waste minimization will vary for different processes. [Pg.280]

We have paid particular attention to industrial processes and have tried to give some indication of the use of particular chemicals. In order to give some idea of the relative magnitudes of production we have included data on annual production. In this, because of availability of data, we have not been entirely consistent in including common data or common units. (World, U.S. or European production figures are used as seem most appropriate or up-to-date - and it must be remembered that for most speciality chemicals U.S. production is dominant.)... [Pg.5]

Hall effect If a current (I) is passed through a conducting crystal in a direction perpendicular to that of an applied magnetic field (H), the conductor develops a potential (V) between the faces which are mutually perpendicular to both the direction of the current and the magnetic field. This is known as the Hall effect the magnitude of the potential difference is given by... [Pg.199]

The magnitude of the NHV has economic importance because the consumption and cost of motor fuels are frequently expressed in liters/100 km and in Francs/liter in France. From the technical viewpoint, the NHV, establishes the maximum range for a transport system with a given load. This is a decisive criterion for applications like aviation. [Pg.182]

In the first step, a screening process will be applied to separate the major potential hazards these will be addressed in more detail. QRA techniques are used to evaluate the extent of the risk arising from hazards with the potential to cause major accidents, based on the prediction of the likelihood and magnitude of the event. This assessment will be based on engineering judgement and statistics of previous performance. Where necessary, risk reduction measures will be applied until the level of risk is acceptable. This of course is an emotive subject, since it implies placing a value on human life. [Pg.69]

The comparison between measured data and simulated data are good for the imaginary part, but differences appear for the real part. The ratio between simulated data and measured data is about 0.75 for TRIFOU calculation, and 1.33 for the specialised code. Those differences for the real part of the impedance signal can be explained because of the low magnitude of real part compared to imaginary part signal. [Pg.144]

The magnitude of the phase shift relates to the total depth of the metal penetrated and hence is a sensitive measure of the wall thiekness and loss of thiekness. [Pg.321]

This is a single-magnet system with a magnetic moment parallel to the radiation surface for magnetic materials. The relative magnitude of the magnetic field at maximum from the height... [Pg.879]

These effects can be illustrated more quantitatively. The drop in the magnitude of the potential of mica with increasing salt is illustrated in Fig. V-7 here yp is reduced in the immobile layer by ion adsorption and specific ion effects are evident. In Fig. V-8, the pH is potential determining and alters the electrophoretic mobility. Carbon blacks are industrially important materials having various acid-base surface impurities depending on their source and heat treatment. [Pg.190]

It is helpful to consider qualitatively the numerical magnitude of the surface tensional stabilization of a particle at a liquid-liquid interface. For simplicity, we will assume 6 = 90°, or that 7sa = 7SB- Also, with respect to the interfacial areas, J sA = SB, since the particle will lie so as to be bisected by the plane of the liquid-liquid interface, and. AB = rcr - The free energy to displace the particle from its stable position will then be just trr 7AB- For a particle of l-mm radius, this would amount to about 1 erg, for Tab = 40 ergs/cm. This corresponds roughly to a restoring force of 10 dyn, since this work must be expended in moving the particle out of the interface, and this amounts to a displacement equal to the radius of the particle. [Pg.473]

Some studies have been made of W/O emulsions the droplets are now aqueous and positively charged [40,41 ]. Albers and Overbeek [40] carried out calculations of the interaction potential not just between two particles or droplets but between one and all nearest neighbors, thus obtaining the variation with particle density or . In their third paper, these authors also estimated the magnitude of the van der Waals long-range attraction from the shear gradient sufficient to detach flocculated droplets (see also Ref. 42). [Pg.508]

Unfortunately, the supennolecule approach [81, 82] is full of teclmical diflSculties, which stem chiefly from the very small magnitude of the interaction energy relative to the energy of the supennolecule. Even today, a novice would be ill-advised to attempt such a computation using one of the black-box computer programs available for perfonning ab initio calculations. [Pg.199]

Figure Al.6.28. Magnitude of the excited-state wavefimction for a pulse sequence of two Gaussians with time delay of 610 a.u. = 15 fs. (a) (= 200 a.u., (b) ( = 400 a.u., (c) (= 600 a.u. Note the close correspondence with the results obtained for the classical trajectory (figure Al. 6.27(a) and (b)). Magnitude of the ground-state wavefimction for the same pulse sequence, at (a) (= 0, (b) (= 800 a.u., (c) (= 1000 a.u. Note the close correspondence with the classical trajectory of figure Al.6.27(c)). Although some of the amplitude remains in the bound region, that which does exit does so exclusively from chaimel 1 (reprinted from [52]). Figure Al.6.28. Magnitude of the excited-state wavefimction for a pulse sequence of two Gaussians with time delay of 610 a.u. = 15 fs. (a) (= 200 a.u., (b) ( = 400 a.u., (c) (= 600 a.u. Note the close correspondence with the results obtained for the classical trajectory (figure Al. 6.27(a) and (b)). Magnitude of the ground-state wavefimction for the same pulse sequence, at (a) (= 0, (b) (= 800 a.u., (c) (= 1000 a.u. Note the close correspondence with the classical trajectory of figure Al.6.27(c)). Although some of the amplitude remains in the bound region, that which does exit does so exclusively from chaimel 1 (reprinted from [52]).
With the knowledge now of the magnitude of the mobility, we can use equation A2.4.38 to calculate the radii of the ions thus for lithium, using the value of 0.000 89 kg s for the viscosity of pure water (since we are using the conductivity at infinite dilution), the radius is calculated to be 2.38 x 10 m (=2.38 A). This can be contrasted with the crystalline ionic radius of Li, which has the value 0.78 A. The difference between these values reflects the presence of the hydration sheath of water molecules as we showed above, the... [Pg.574]


See other pages where Magnitude of is mentioned: [Pg.224]    [Pg.392]    [Pg.100]    [Pg.149]    [Pg.150]    [Pg.151]    [Pg.197]    [Pg.213]    [Pg.369]    [Pg.28]    [Pg.29]    [Pg.154]    [Pg.283]    [Pg.552]    [Pg.655]    [Pg.887]    [Pg.1035]    [Pg.217]    [Pg.236]    [Pg.244]    [Pg.357]    [Pg.540]    [Pg.17]    [Pg.51]    [Pg.109]    [Pg.220]    [Pg.246]    [Pg.272]    [Pg.340]    [Pg.493]    [Pg.570]    [Pg.574]   


SEARCH



Magnitude

© 2024 chempedia.info