Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Magnetic supported membrane

Semiconducting one-dimensional (ID) nanolibers or nanowires are of interest for a wide variety of applications including interconnects, functional devices, and molecular sensors as well as for fundamental physics studies. Devices have been fabricated fi om semiconductor, and carbon nanotubes, and more recently from ICP nanofibers. It has been predicted that ICP nanofibers will have unique electrical, optical, and magnetic properties [134]. Several different methods for producing these ICP nanofibers have been developed with or without the aid of a template. The template-based methods involve synthesizing a tubular structure of the ICP within the pores of a support membrane, such as an alumina membrane [135] or a track-etched polycarbonate membrane [136]. However, more recent work has... [Pg.1175]

Several works have been reported for macroscopically orientated biological membranes.106-109 The biomembrane alignment can be carried out mechanically or magnetically. The first one relies on the deposition of lipid bilayers on the surface of a rigid support (glass plates) such that the bilayer normal is perpendicular to the surface of the support itself. Small peptides and the lipid bilayers can be dissolved in organic solvents which are successively removed under vacuum.105 The re-hydration of the system in a chamber of an optimized temperature, humidity and time gives rise to the desired orientation. [Pg.204]

Fig. 5 Membrane models for NMR structure analysis, (a) An isotropic detergent micelle (left) is compared to the dimensions of lipid bilayers (right), (b) Macroscopically oriented membrane samples can be prepared on solid support, as nanodiscs, or as magnetically oriented bicelles. (c) Nomenclature and variability of liposomes small (SUV, 20-40 nm), intermediate (IUV, 40-60 nm), large (LUV, 100-400 nm), and giant unilamellar vesicles (GUV, 1 pm) multi-lamellar (MLV), oligo-lamellar (OLV) and highly heterogeneous multi-oligo-lamellar vesicles (MOLV)... Fig. 5 Membrane models for NMR structure analysis, (a) An isotropic detergent micelle (left) is compared to the dimensions of lipid bilayers (right), (b) Macroscopically oriented membrane samples can be prepared on solid support, as nanodiscs, or as magnetically oriented bicelles. (c) Nomenclature and variability of liposomes small (SUV, 20-40 nm), intermediate (IUV, 40-60 nm), large (LUV, 100-400 nm), and giant unilamellar vesicles (GUV, 1 pm) multi-lamellar (MLV), oligo-lamellar (OLV) and highly heterogeneous multi-oligo-lamellar vesicles (MOLV)...
Dr. Hui has worked on various projects, including chemical sensors, solid oxide fuel cells, magnetic materials, gas separation membranes, nanostruc-tured materials, thin film fabrication, and protective coatings for metals. He has more than 80 research publications, one worldwide patent, and one U.S. patent (pending). He is currently leading and involved in several projects for the development of metal-supported solid oxide fuel cells (SOFCs), ceramic nanomaterials as catalyst supports for high-temperature PEM fuel cells, protective ceramic coatings on metallic substrates, ceramic electrode materials for batteries, and ceramic proton conductors. Dr. Hui is also an active member of the Electrochemical Society and the American Ceramic Society. [Pg.462]

Various types of photocatalytic membrane reactors in which the catalyst was used in different modes have been built with the purpose to have an easy separation of the catalyst from the reaction environment a photocatalyst in suspension in magnetically or mechanically agitated slurries confined by means of a membrane, fixed bed, catalyst deposited or entrapped on an inert support or in a membrane, and so on. [Pg.348]

Selected signature libraries may be immobilized on a solid matrix such as activated silica resin, cellulose microporous modified membranes [66], Sepharose , magnetic beads based on MagaPhase technology. The affinity support obtained is used for IgM antibodies parting. [Pg.532]

For the unique properties of PBs to be exploited, PBs must be deposited properly onto a solid support. It is highly desirable to prepare mechanically robust PBs films with controlled thickness, chemical composition and crystallinity, having ion-sieving membranes and electrochromic devices in mind [6], or to create regular patterns of PB-based single molecule magnets [13],... [Pg.162]

Langmuir-Blodgett films may have value in many applied areas of traditional interest to the industrial chemist, such as adhesion, encapsulation, and catalysis. The permeability characteristics of monolayer assemblies may also find application as synthetic membranes for ultrafine filtration, gas separation, and reverse osmosis. For example, Albrecht et al. (44) proved the eflSciency of polymeric diacetylene monolayers on semipermeable supports in reducing the flow of CH4. One interesting possibility lies in using LB monolayers as lubricants in magnetic tape technology. Unpublished reports have indicated that frictional coeflScients can be reduced markedly when the tape is coated with a few monolayers. In applications such as those listed previously, difiSculties may well be encountered with the mechanical stability of the films. To date, relatively little research has been carried out in this area. [Pg.243]

The testing system (Fig. 1) was a 1.2 volume pressure apparatus made of metaplex (1). The har support covered with the membrane (2) of an effective surface area of 49.2 cm was fixed in the lower part of the apparatus. To maintain the dye concentration on the level required, continuous circulation of the permeate between the feeding tank (5) and the apparatus was applied. The solution was mixed with a magnetic stirrer (3) which prevents excess concentration of dye on the membrane surface. Pressure was generated by feeding the apparatus with an inert gas (nitrogen) from a cylinder (8). Samples for flow rate measurements and determinations of dye concentration in the permeate were taken through a stub pipe (4). [Pg.390]

The reaction sequence was then extended to three steps, again with catalyst recovery, with conversion of 112 into 115 by adding the base catalyst supported on magnetic nanoparticles and the polymeric acid catalyst into the vessel along with the platinum catalyst enclosed in a membrane. The overall yield of the final product 115 was 78%. [Pg.139]

Tudorache, M., Zdrojewska, I. A., Emneus, J. (2006). Evaluation of progesterone content in sahva using magnetic particle-based immuno supported liquid membrane assay (p-ISLMA). Biosens. Bioelectron., 22, 241-6. [Pg.140]

The plastic supports exposed approximately 3 mm2 of the membrane surface. Protein-containing solution (350 pi) was placed under the membrane in contact with it. This was the source solution. Air was excluded from the membrane s pores by soaking them in ethanol, and then water (double distilled in glass) prior to use. Bubbles were excluded from the chambers by carefully placing the membrane onto the surface of the liquid in the test chamber. Since the membranes are thin and translucent, the presence of even very tiny bubbles could be observed through the membranes with a dissecting microscope. The mix was stirred continuously with a magnetic stir bar. Buffer (30 yd of phosphate buffered saline,... [Pg.297]


See other pages where Magnetic supported membrane is mentioned: [Pg.162]    [Pg.874]    [Pg.29]    [Pg.146]    [Pg.386]    [Pg.457]    [Pg.295]    [Pg.58]    [Pg.97]    [Pg.553]    [Pg.12]    [Pg.410]    [Pg.290]    [Pg.1022]    [Pg.181]    [Pg.96]    [Pg.150]    [Pg.145]    [Pg.295]    [Pg.103]    [Pg.422]    [Pg.454]    [Pg.455]    [Pg.33]    [Pg.278]    [Pg.4023]    [Pg.147]    [Pg.453]    [Pg.36]    [Pg.189]    [Pg.1587]    [Pg.135]    [Pg.66]    [Pg.30]    [Pg.1232]    [Pg.81]   
See also in sourсe #XX -- [ Pg.355 ]




SEARCH



Magnetic membranes

Magnetic supports

Magnetically-supported

Membrane support

Supported membrane

© 2024 chempedia.info